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1. (a) [4 marks] Consider the N -extended super-Poincaré algebra in 4d Minkowski spacetime.
Write down the commutators between the Poincaré generators and the supercharges, and
the anticommutators among supercharges.

(b) [2 marks] Consider 4d N = 2 supersymmetry. Describe the main differences between long
and short massive supermultiplets.

(c) [6 marks] Consider minimal 4d N = 1 supersymmetry. Let H = P 0 denote the Hamil-
tonian operator. Prove that 〈ψ|H|ψ〉 > 0 for any state |ψ〉. Prove that H|ψ〉 = 0 if and
only if Qα|ψ〉 = 0 and Qα̇|ψ〉 = 0. Explain why this result is relevant in the study of
spontaneous supersymmetry breaking.

Hint: In the conventions of the lectures, {Qα, Qβ̇} = 2
( P 0 + P 3 P 1 − i P 2

P 1 + i P 2 P 0 − P 3

)
αβ̇
.

(d) [13 marks] Let us consider supersymmetric quantum mechanics with one complex super-
charge. We can regard quantum mechanics as a quantum field theory in (0+1)-dimensions.
Thus, a field is a function of time t. In analogy with 4d N = 1 supersymmetry, one can
introduce a notion of superspace. It is parametrized by time t and two Grassmann-odd
coordinates θ, θ, satisfying the reality condition θ∗ = θ. Time translations and supersym-
metry variations are implemented by differential operators. Let us define

Q = i

(
∂

∂θ
− i θ ∂

∂t

)
, Q = i

(
∂

∂θ
− i θ ∂

∂t

)
, H = i

∂

∂t
. (1)

• [2 marks] Verify by explicit computation that

{Q,Q} = 2H . (2)

Just like in 4d N = 1 superspace, one can define supersymmetry covariant derivatives,
which anticommute with the differential operators Q, Q. They are given by

D =
∂

∂θ
+ i θ

∂

∂t
, D =

∂

∂θ
+ i θ

∂

∂t
. (3)

A real superfield is a function of t, θ, θ of the form

X(t, θ, θ) = x(t) + θ ψ(t)− θ ψ(t) + θ θD(t) , (4)

where the component fields x, ψ, ψ, D obey the reality conditions

x∗ = x , ψ∗ = ψ , D∗ = D . (5)

The fields x, D are Grassmann-even, while ψ, ψ are Grassmann-odd.

We can construct supersymmetric Lagrangians by integrating a real superfield over θ, θ.

• [4 marks] Consider a real superfield X as in (4) and compute

Lkin =

∫
dθ dθ

(
− 1

2 DXDX
)
. (6)

Hint: For the integral over Grassmann-odd coordinates, use
∫
dθ dθ θ θ = 1.

• [4 marks] Let h be a real analytic function. Let us consider the composite real
superfield h(X). Prove that∫

dθ dθ h(X) = h′(x)D − h′′(x)ψ ψ , (7)

where a prime denotes differentiation.

Hint: The θθ component of h(X) can be extracted by computing the quantity
∂
∂θ

∂
∂θh(X(t, θ, θ)), and setting θ = 0 = θ at the end of the computation.
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• [3 marks] We may now consider the total Lagrangian

Ltot =

∫
dθ dθ

(
− 1

2 DXDX − h(X)
)
. (8)

Write Ltot in terms of the component fields x, ψ, ψ, D. Integrate out the auxiliary
field D and write the resulting Lagrangian in terms of x, ψ, ψ.

2. (a) [2 marks] Define the notion of a chiral superfield in 4d N = 1 superspace. Introduce and
define superspace differential operators as needed.

(b) [2 marks] Write the most general renormalizable action in superspace for a model with a
collection Φi (i = 1, . . . , n) of chiral superfields (and no vector superfields).

(c) [6 marks] Let us consider a renormalizable model with three chiral superfields X, Y , Z
and superpotential

(i) W = g X Y Z , or (ii) W = λX +mY Z + g X Y 2 . (9)

Assume m, g, λ are generic, non-zero complex parameters. Determine the classical space
of supersymmetric vacua of the model (i) and the model (ii).

(d) [2 marks] Describe the field content of an off-shell 4d N = 1 vector multiplet for gauge
group G. How do the the various fields transform under G?

(e) [2 marks] Consider an Abelian vector superfield V and its field strength superfield Wα =

−1
4 Dβ̇ D

β̇
DαV . Prove that Wα is invariant under a gauge transformation

V 7→ V + i
2 (Λ− Λ) , (10)

where Λ is a chiral superfield.

(f) [11 marks] Let us consider supersymmetric quantum electrodynamics (SQED), i.e. a 4d
N = 1 gauge theory with gauge group U(1), one chiral superfield X+ of charge +1, and
one chiral superfield X− of charge −1. (By a common abuse of notation, we shall use
the same symbol for a chiral superfield, its scalar component, and the vacuum expecta-
tion value (VEV) of the latter, depending on context.) We consider the model without
superpotential, but we turn on a non-zero Fayet-Iliopoulos parameter.

• [1 mark] Explain why the classical space of supersymmetric vacua (moduli space) of
the model is described by an equation of the form

|X+|2 − |X−|2 = γ , (11)

where γ is a non-zero real constant.

• [2 marks] The moduli space of the model is the space of solutions to (11) modulo
U(1) gauge transformations. What is the real dimension of this space?

• [2 marks] What happens to the U(1) gauge symmetry on moduli space?

• [6 marks] Let us define the gauge-invariant chiral superfield

M = X+X− .

The low-energy dynamics around a generic point in moduli space can be described by
an effective theory for the field M , with an effective Kähler potential Keff(M,M †).
Compute Keff(M,M †) at the classical level.

Hint: The Kähler potential of SQED is known as a function of X±, (X±)†. On the
moduli space, we can trade X±, (X±)† for M , M † and γ.
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