Honour School of Mathematical and Theoretical Physics Part C Master of Science in Mathematical and Theoretical Physics

QUANTUM FIELD THEORY
 Hilary Term 2021

WEDNESDAY, 13TH JANUARY 2021, Opening Time: 09:30 a.m GMT

You should submit answers to all three questions.
You have $\mathbf{3}$ hours writing time to complete the paper and up to $\mathbf{1}$ hour technical time for uploading your file. The allotted technical time must not be used to finish writing the paper.

The use of a calculator and/or computer algebra packages is not allowed.

1. The Lagrangian density for a system consisting of a real scalar and a Dirac fermion of mass m , and a heavier Dirac fermion of mass $M>2 m$, is given by

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{3!} \lambda \phi^{3}+\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-M\right) \Psi+\bar{\chi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \chi-g \phi \bar{\Psi} \chi-g \phi \bar{\chi} \Psi .
$$

(a) [4 marks] Write down the momentum-space Feynman rules assuming Minkowski spacetime.
(b) [4 marks] Draw the tree-level Feynman graphs, including momentum labelling, for the following processes: i) scattering of a Ψ fermion and a χ fermion, ii) scattering of a Ψ fermion and a boson, iii) decay of a Ψ fermion into a χ fermion and one boson, iv) decay of a Ψ fermion into a χ fermion and two bosons.
(c) [6 marks] $\mathrm{A} \Psi$ fermion at rest with spin s_{1} and four-momentum $p_{1}=(M, 0,0,0)$ decays into a χ fermion with spin and four-momentum s_{2}, p_{2} and one boson with four-momentum p_{3}. Write down a formula for the matrix element $M_{p_{1}, p_{2}, p_{3}}^{s_{1}, s_{2}}$ corresponding to your diagram in question (b)iii. Explain why the total amplitude squared for the decay of unpolarised particles to a final state of any spin is given by

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s_{1}, s_{2}}\left|M_{p_{1}, p_{2}, p_{3}}^{s_{1}, s_{2}}\right|^{2} .
$$

Show that

$$
|\mathcal{M}|^{2}=g^{2} M(M+2 m) .
$$

You may assume that $\sum_{s} u_{a}^{s}(\mathbf{p}) \bar{u}_{b}^{s}(\mathbf{p})=(\not p+m)_{a b}$ for Dirac spinors $u^{s}(\mathbf{p})$ and mass m.
(d) [7 marks] The decay width is given by

$$
\Gamma=\frac{1}{2 M} \int \frac{d^{3} \mathbf{p}_{1}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}_{1}}} \int \frac{d^{3} \mathbf{p}_{2}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}_{2}}}|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}-p_{2}-p_{3}\right) .
$$

Evaluate Γ.

(e) [4 marks] Now consider the decay of a Ψ fermion into a χ fermion and two bosons. Without detailed calculation, explain how the decay width Γ depends on m in the region $M \simeq 3 m$.
2. In the basis

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \tag{1}\\
0 & -I
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right),
$$

the Dirac spinors $u^{s}(\mathbf{p})$ are given by

$$
\begin{equation*}
u^{s}(\mathbf{p})=\sqrt{E_{\mathbf{p}}+m}\binom{\xi^{s}}{\frac{\xi^{s} \cdot \boldsymbol{\sigma}}{E_{\mathbf{p}}+m} \xi^{s}}, \tag{2}
\end{equation*}
$$

where ξ^{s} are an orthonormal pair of constant two-component spinors. The Dirac fermion field is given by

$$
\begin{equation*}
\psi(t, \mathbf{x})=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \sum_{s}\left(b_{-\mathbf{p}}^{s \dagger} v^{s}(-\mathbf{p}) e^{i E_{\mathbf{p}} t}+a_{\mathbf{p}}^{s} u^{s}(\mathbf{p}) e^{-i E_{\mathbf{p}} t}\right) e^{i \mathbf{p} \cdot \mathbf{x}} \tag{3}
\end{equation*}
$$

where the annihilation and creation operators satisfy the standard anti-commutation rules.
(a) [5 marks] Show by direct calculation that $\sum_{s} u_{a}^{s}(\mathbf{p}) \bar{u}_{b}^{s}(\mathbf{p})=(\not p+m)_{a b}$. By using the fact that $\left\{u^{s}(\mathbf{p}), v^{s}(-\mathbf{p})\right\}$ span the spinor space deduce that $\sum_{s} v_{a}^{s}(\mathbf{p}) \bar{v}_{b}^{s}(\mathbf{p})=(\not p-m)_{a b}$ for Dirac antiparticle spinors $v^{s}(\mathbf{p})$.
(b) [5 marks] Find the equal time anti-commutator $\left\{i \bar{\psi}(t, \mathbf{x}) \gamma^{0}, \psi(t, \mathbf{y})\right\}$. What is the significance of this quantity?
(c) [5 marks] Show that

$$
\begin{equation*}
a_{\mathbf{p}}^{s}=\frac{e^{i E_{\mathbf{p}} t}}{\sqrt{2 E_{\mathbf{p}}}} u^{s}(\mathbf{p})^{\dagger} \int d^{3} \mathbf{x} e^{-i \mathbf{p} \cdot \mathbf{x}} \psi(t, \mathbf{x}) \tag{4}
\end{equation*}
$$

and write down a similar relationship for $b_{-\mathbf{p}}^{s \dagger}$.
(d) [10 marks] Assuming the Hamiltonian in the form

$$
\begin{equation*}
H=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} E_{\mathbf{p}} \sum_{s}\left(a_{\mathbf{p}}^{s \dagger} a_{\mathbf{p}}-b_{\mathbf{p}}^{s} b_{\mathbf{p}}^{s \dagger}\right), \tag{5}
\end{equation*}
$$

use the results of the previous part to find an expression for the Hamiltonian density in position space in terms of the field $\psi(t, \mathbf{x})$.
3. The Lagrangian density for a real scalar field theory in 3 dimensions is given by

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{g_{1}}{4!} \phi^{4}-\frac{g_{2}}{6!} \phi^{6} .
$$

(a) [3 marks] What are the dimensions of g_{1} and g_{2} ?
(b) [6 marks] By analysing a graph with n external lines, e internal lines, n_{4} four-point vertices, and n_{6} six-point vertices, show that the superficial degree of divergence is given by

$$
\omega=3-\frac{1}{2} n-n_{4} .
$$

Explain briefly the significance of this result.
(c) [9 marks] For the two-point function draw i) all one-particle irreducible graphs with one vertex, and ii) all one-particle irreducible graphs with two vertices that contribute to wavefunction renormalization. For each graph write down expressions using momentumspace Feynman rules (there is no need to evaluate the combinatorial factors).
(d) [7 marks] How many different momentum integrals occur? For each integral show how any ultra-violet divergence arises and compare the actual degree of divergence of the graphs with ω.

