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1. Consider a theory for a single complex scalar field φ in Minkowski space, with Lagrangian
density L given by

L = (∂µφ
∗)(∂µφ)− f(φ∗φ), (1)

where f can be any function.

(a) [4 marks] Find equations of motion for φ and φ∗.

(b) [6 marks] Show that this Lagrangian is invariant under

φ→ φ′ = eiαφ, φ∗ → φ′∗ = e−iαφ∗ , (2)

where α is an arbitrary real constant. Show that the Noether current Jµ associated with
this symmetry is independent of the function f and may be written as

Jµ = i(∂µφ∗)φ− iφ∗(∂µφ) . (3)

Show that it is conserved, namely ∂µJ
µ = 0.

[The Noether current associated to a continuous symmetry is given by

Jµ =
δL

δ(∂µφ)
δφ+

δL
δ(∂µφ∗)

δφ∗ − J̃µ, with δL = ∂µJ̃
µ . (4)

]

(c) [9 marks] Consider the following expansion of field φ in the quantum theory:

φ(x) =

∫
d3~p

(2π)3
1√
2ω~p

(b~p e
−i p x + c†~p e

i p x)
∣∣∣
p0=ω~p

(5)

with
[b~p, b

†
~q] = [c~p, c

†
~q] = (2π)3δ(3)(~p− ~q) (6)

and all other commutators of b~p, b
†
~p, c~p and c†~p are zero. By replacing the classical field

by the quantum field operator (5) find an expression for the conserved charge operator
Q =

∫
d3~x J0 in terms of the annihilation and creation operators. Give an interpretation

of the charge Q.

(d) [6 marks] Show that [Q,φ] is proportional to φ and find the constant of proportionality.
Give an interpretation of this commutation relation.

2. Consider the theory given by the action:

S =

∫
ddx

[
1

2
(∂µφ)(∂µφ)− 1

2
m2 φ2 − κ

3!
φ3 − λ

4!
φ4
]
, (7)

where φ is a real scalar field in the Minkowski space.

(a) [4 marks] Assuming that the action is a dimensionless quantity, find the mass dimension
of the field φ and the coupling constants λ and κ. Is there a critical dimension in which
both couplings are dimensionless?

(b) [8 marks] Using Wick’s theorem express contributions coming from connected graphs to

〈φ(x)φ(y)〉

up to one-loop order. Do not attempt to perform space time integrals. Give a diagram-
matic representation of various terms in the expansion.
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(c) [7 marks] Determine all one-particle irreducible one-loop graphs, complete with their ap-
propriate symmetry factors, which contribute to the three-point correlation function in
position space

〈φ(x)φ(y)φ(z)〉

expressing your answer in terms of integrals over d-dimensional momenta. Do not attempt
to evaluate the integrals.

(d) [6 marks] Determine all one-loop graphs, complete with their appropriate symmetry fac-
tors, which contribute to the four-point vertex function Γ(4)(p1, p2, p3, p4) with

∑
i pi = 0.

Write down your answer in terms of integrals over d-dimensional loop momenta. Do not
attempt to evaluate the integrals.

3. Consider the theory describing an interacting complex massive scalar field in the Minkowski
space, with Lagrangian density

L = (∂µφ
∗)(∂µφ)−m2

0 φ
∗φ− λ0

4
(φ∗φ)2 . (8)

(a) [4 marks] Write down the momentum-space Feynman rules for the propagators and the
vertex of the theory. Remember that a simple line for the propagator is not sufficient.

(b) [4 marks] Using φ = (φ1 + iφ2)/
√

2, rewrite the Lagrangian in terms of two real scalar
fields.

(c) [4 marks] Write down the Feynman rules for the Lagrangian written in terms of φ1 and
φ2.

(d) [4 marks] Let us now study the renormalization (at one loop) of this theory, in the picture
where there is one complex scalar field. Consider the theory in d = 4− ε dimensions. The
renormalized mass m and renormalized dimensionless coupling g are related to the bare
ones in the following way:

λ0 = gµε(1 + δg), m2
0 = m2 + δm2 . (9)

Draw the diagrams for the tree-level and one-loop expansion for the two-point and four-
point vertex functions, Γ(2) and Γ(4), including the counterterms. What is the order in g
of the leading one-loop contributions to δg and δm2?

(e) [5 marks] Compute the divergent part coming from 1-loop diagram(s) of Γ(2) in dimen-
sional regularization, and hence show that the mass counterterm in the minimal subtrac-
tion scheme is

δm2 =
gm2

8π2ε
. (10)

[You may make use of the Gamma function expansion and of the following symmetric
Lorentzian integral:∫

ddq

(2π)d
1

[q2 + 2q · p−m2 + iε′]α
= (−1)α

i

(4π)d/2
Γ(α− 1

2)

Γ(α)
(p2 +m2)d/2−α (11)

Γ(−n+ x) =
(−1)n

n!

(
1

x
+ 1 +

1

2
+ . . .+

1

n
− γ
)

+O(x) . (12)

]

(f) [4 marks] Find an expression for the renormalized mass m2 in terms of the bare quantities
m2

0 and λ0 (at leading order in g). Compute the γm function of the theory, defined as

γm(g) =
1

2
µ
∂ logm2

∂µ

∣∣∣
λ0
. (13)
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4. For the quantum field theory of a single massless field φ and a single dimensionless coupling
constant g, at a regularization scale µ, consider the n-point vertex function Γ(n)({pk}, g(µ), µ).

Let Γ
(n)
0 ({pk}, λ0) be the bare vertex function depending on the bare coupling λ0 and on the

regulator ε. The renormalized vertex function can be written in terms of the bare one as

Γ(n)({pk}, g(λ0, µ), µ) = Zφ(λ0, µ)n/2 Γ
(n)
0 ({pk}, λ0) , (14)

where Γ(n) is finite when the regulator ε is removed, namely, all divergences are absorbed into
the definition of the renormalized coupling g(λ0, µ) and of the field renormalization Zφ(λ0, µ).

(a) [5 marks] Derive the Callan-Symanzik equation for a generic n-point vertex function Γ(n):(
µ
∂

∂µ
+ β(g)

∂

∂g
− n

2
γ(g)

)
Γ(n)({pk}, g, µ) = 0 , (15)

where

β(g) = µ
∂

∂µ
g(µ)

∣∣∣
λ0
, γ(g) = µ

∂ logZφ
∂µ

∣∣∣
λ0
. (16)

(b) [5 marks] Assuming that the Callan-Symanzik equation holds for the bare vertex function

Γ
(n)
0 , namely for Γ̂(n)({pk}, g0, µ) = Γ

(n)
0 ({pk}, λ0) with g0 = λ0µ

−ε, show that

β0(g0) = −ε g0, γ0(g0) = 0 . (17)

[ You may use the definition of β(g) directly to calculate β0(g0).]

(c) [5 marks] Assume that g(λ0, µ) = g(g0) and Zφ(λ0, µ) = Zφ(g0) and use

Γ̂(n)({pk}, g0, µ) = Zφ(λ0, µ)−n/2 Γ(n)({pk}, g(λ0, µ), µ) (18)

to show that the Callan-Symanzik equation holds also for Γ(n) with coefficients

β(g(g0)) = β0(g0)
∂g

∂g0
, γ(g(g0)) = γ0(g0) +

β0(g0)

Zφ(g0)

∂Zφ
∂g0

. (19)

(d) [5 marks] Consider the perturbative expansion of the coupling constant and of the field
renormalization of the form

g(g0) = g0 + g20

(a1
ε

+ a2 + a3ε+ . . .
)
, (20)

Zφ(g0) = 1 + g0

(z1
ε

+ z2 + z3ε+ . . .
)
. (21)

Compute β(g) and γ(g) and check that they are finite in the absence of regulator.

(e) [5 marks] Now consider the next perturbative order for the coupling constant and focus
on the leading order in ε, that is

g(g0) = g0 + g20
a1
ε

+ g30
b1
ε2
. (22)

Compute β(g) to order g3 and 1
ε and show that its finiteness implies that the coefficients

entering the two loop corrections are dependent on the lower order ones.
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