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Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2020 (2019) (2018) (2017) (2016) 2020 (2019) (2018) (2017) (2016)

Distinction 42 (40) (25) (31) (18) 76 (76) (60) (76) (86)
Merit 9 (6) (n/a) (n/a) (n/a) 17 (11) (n/a) (n/a) (n/a)
Pass 3 (6) (17) (10) (3) 5 (11) (40) (24) (14)
Fail 1 (1) (0) (0) (0) 2 (2) (0) (0) (0)
Total 55 (53) (42) (41) (21) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
No vivas were held.

• Marking of scripts.
All dissertations and three mini-project subjects were double-marked,
after which the two markers consulted in order to agree a mark be-
tween them.

All written examinations and take-home exams were single-marked
according to carefully checked model solutions and a pre-defined
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marking scheme which was closely adhered to. One mini project
subject which followed a mark scheme (Galactic and Planetary Dy-
namics) was also marked in the same way. A comprehensive inde-
pendent checking procedure is also followed.

B. New examining methods and procedures

Due to the pandemic, procedures were introduced. Written examinations
in Trinity term took place in the form of timed open-book examinations,
where students had the same length of time to complete the open-book ex-
amination as they would have had for a written examination, plus an extra
hour to upload/download the examination paper, and to scan and submit
their solutions. Students took the open-book examinations according to
their time-zone and were required to uphold an honour code. Oral presen-
tations were also cancelled. Candidates had the option to request that they
be awarded Declared to Deserved Masters (DDM) instead of a Distinction,
Merit, Pass or Fail classification. Candidates were permitted to drop one
formally assessed unit. A safety net was also implemented where the num-
ber of completed units required to achieve each classification available was
reduced by one.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 15 October 2019 (first notice), 15
November 2019 (second notice), 28 February 2020 (third notice) and the 13
May 2020 (final notice).

The examination conventions for 2019-2020 are on-line at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

B. Equality and Diversity issues and breakdown of the re-
sults by gender

Removed from public version

Oral Presentation Oral presentations were cancelled due to the pandemic
in 2019-20, and were not a requirement to pass the degree.

C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 2 and in the
Average USM per Formal Assessment graph below. In accordance with
University guidelines, statistics are not given for papers where the number
of candidates was five or fewer.
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Table 2: Numbers taking each paper
Paper Number of Avg StDev

Candidates USM USM
Advanced Fluid Dynamics - - -
Advanced Philosophy of Physics - - -
Advanced Quantum Field Theory 28 68 16.8
Advanced Quantum Theory 22 69 13.07
Algebraic Geometry - - -
Algebraic Topology - - -
Applied Complex Variables 8 73 12.96
Category Theory - - -
Collisionless Plasma Physics 8 72 11.41
Continuous Optimisation - - -
Differentiable Manifolds 7 67 11.08
Disc Accretion in Astrophysics - - -
Dissertation (single unit) 13 77 8.21
Dissertation (double unit) 16 81 7.02
Finite Element Methods for PDEs - - -
Galactic and Planetary Dynamics 6 72 10.03
General Relativity I 26 75 15.18
General Relativity II 12 64 17.88
Geometric Group Theory - - -
Groups and Representations 31 80 12.49
Introduction to Quantum Information 30 79 14.99
Kinetic Theory 16 70 17.14
Lie Groups - - -
Networks 11 71 9.98
Numerical Linear Algebra - - -
Perturbation Methods 10 67 11.03
Quantum Field Theory 46 68 12.89
Quantum Matter 12 69 20.86
Radiative Processes and High Eng. Astro. - - -
String Theory I 16 71 5.19
Supersymmetry and Supergravity - - -
Theories of Deep Learning - - -

The number of candidates taking each homework completion course is
shown in Table 3. In accordance with University guidelines, statistics are
not given for papers where the number of candidates was five or fewer.
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Table 3: Numbers taking each homework completion course
Paper Number of Percentage

Candidates completing course
Advanced Fluid Dynamics - -

Advanced Quantum Theory - -
Advanced Supersymmetry - -
Astroparticle Physics - -
Collisionless Plasma Physics - -
Conformal Field Theory 9 100
Cosmology 12 100
Disc Accretion in Astrophysics - -
Galactic and Planetary Dynamics - -
Group and Representations 31 100
High Energy Density Physics - -
Kinetic Theory - -
Nonequilibrium Statistical Physics 16 100
Quantum Field Theory in Curved Space Time 12 83
Quantum Matter - -
Renormalisation Group 13 100
Soft Matter Physics 9 100
String Theory II - -
Supersymmetry and Supergravity 12 100
Symbolic, Numerical and Graphical Scientific Programming 10 100
The Standard Model and Beyond I - -
The Standard Model and Beyond II - -
Topics in Soft and Active Matter Physics - -
Topological Quantum Theory 24 100

D. Assessors’ comments on sections and on individual ques-
tions

Advanced Fluid Dynamics

Question 1: Q1 proved relatively easy, although, as usual, not as easy I
thought it would be.

Part (a) was pure bookwork, but, even in open-book format, it proved
surprisingly challenging for most students to lay out with clarity what
the iMHD equations were and what the assumptions behind them were.
Typical omissions included not stating the equation for p̃ (needed to en-
force incompressibility) or not realising that β and Ma were related in the
iMHD ordering. In a couple of cases, the students were unclear about the
difference between iMHD and MHD.

Part (b) was done well by all, although not all were 100% clear about the
logic of how one showed that 2D implied Bx = ∂yA and By = −∂xA, rather
than merely that the latter was a consistent choice.

Part (c): everyone got full marks for getting to the result correctly, although
most did it by a longer route (via vector algebra in 3D) than necessary, not
realising that B2 = (∂xA)2 + (∂yA)2, varying which would have been really
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easy.

Part (d): no one realised that in iMHD, p̃ in principle had a magnetic part
because the Lorentz force is not divergence-free and that, therefore, one
had to spot that the force was −∇αA2/2, which could be absorbed into p̃
and the latter would then be zero in the absence of flows.

Question 2: Surprisingly few candidates attempted all parts of this ques-
tion. Some derivations in “show that” parts of questions had large gaps
immediately before the required result.

Part (a) Some candidates showed ∇2u = 0 but did not show that ∇ · u = 0.
Both calculations are simplest in index notation.

Candidates were then expected to find the flow around a rotating sphere
by considering c = Ω and φ ∝ 1/r. Most started from scratch instead. The
torque about the rotation axis is (with outward normal n = er)

T = k ·
"

x × σ · n dS =

"
a sinθσφr dS = 2πa3

∫ π

0
(sinθ)2 σφr dθ.

Several candidates lost one or more factors of sinθ from trying to find the
θ or φ component of the torque.

Part (b) The total torque on the particle must vanish in Stokes flow, so the
viscous torque T is minus the gravitational torque. This gives T = hp×mg,
with g = −gk pointing downwards. Several candidates made sign errors.

Even though this was sat as an open book exam, it was still necessary to
show the derivation of the contribution from H̃ E∞, not just assert that it
was covered in lectures.

Noone stated explicitly that the torque T is perpendicular to p, like the
contribution from H̃ E∞, so C−1T = T/YC.

Few candidates addressed the special case of a sphere, and noone noticed
that part (a) gives YC = 8πa3 for a sphere.

Part (c) Only a few candidates attempted this part. They all found the
evolution equation for Θ, but noone found the steady solution for long
rods with β = 1. It is best to formulate a quadratic equation for cos Θ and
consider the “−” root to show that a steady solution always exists. For
spheres (β = 0) one can solve immediately for cos Θ = −Ω/Γ, so a steady
solution only exists when |Ω| ≤ Γ.
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Advanced Quantum Field Theory

All questions were to be attempted. The standard of answers was good
in general. The average mark for question 1 one was somewhat higher
than for questions 2 and 3, I suspect because this contained a greater deal
of bookwork, and also because the majority of students will have started
with this, hence making any timing issues less significant here. Further
comments follow below.

Question 1). a) i) was basic bookwork, and all students got this right. ii)
contained some fairly basic manipulations and again almost all students
had no issue here, with the same being true for the Feynman diagram in
part iii) and the result in iv). Part v) was unseen, and while some students
struggled to get every element of the manipulations correct, most managed
at least part if not all of the required work. Most students spotted that the
integral in vi) was finite. Part vii) was unseen, though the answer was
contained in the lecture notes; many students managed to get the answer
via a correct method, though not all. Part viii) was bookwork and almost
all students managed this.

Question 2). a) i) was bookwork, and almost students got full marks. ii)
was unseen, and while many students managed to get full or close to full
marks, a non–negligible minority struggled to solve the question at all,
or else did not have time to. Part iii) was unseen, and the students were
evenly divided between those who could spot the answer, getting full
marks, and those who could not. b) i) was unseen, but almost all students
could identify the correct diagrams. ii) was unseen, and a large fraction
of students appeared to struggle with the required manipulations of Dirac
algebra, at least given time constraints; a sizeable minority managed to get
full marks, however. iii) was unseen, and more challenging. Only a small
fraction of students managed to get full marks here, with many struggling
or running out of time.

Question 3). a) i) was bookwork, and almost all students got full marks.
ii) was unseen, and was fairly evenly divided between students would
managed to get very high marks, those who managed to get part of the
answer out, and those who struggled to approach the question entirely.
b) i) to iii) was a mixture of bookwork and unseen material, and most
students managed to get high marks. iv) involved a simple observation,
which almost all students managed. v) was unseen, and designed to be
challenging.
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Advanced Quantum Theory

Q1 This question was on the use of transfer matrix to solve an Ising model
with vacancies. Part (a) was successfully completed by the vast major-
ity of students as it was a modest generalization of problems from the
notes, the homework, past papers, and revisions. Part (b) was similarly a
straightforward exercise, but two common errors were failing to explain
why it was always possible to diagnolize the transfer matrix (because it
is real and symmetric) and, although the eigenvalues were given to the
students, identifying the maximal eigenvalue tripped some students up.
Part (c) was to obtain a formula for the average number of vacancies and
examine it in a limiting case of very high temperature. Despite being given
a generous hint to try to express this in terms of the free energy (by use of
standard ideas from undergraduate statistical mechanics, it can be written
as −∂ f/∂µwith T fixed) some student stumbled, with a very small number
inexplicably trying to compute powers of the 00 component of the transfer
matrix). Most students who followed the hint successfully obtained the
answer. Part (d) involved computing the entropy per spin in a different
limit, where the vacancy chemical potential is driven to −∞. Full points
were only given if the correct physical point was made, namely that in this
limit the model reduces to the standard Ising model — something missed
by a surprisingly large number of students.

Q2 This question concerned application of Holstein-Primakoff mapping
and Bogoliubov transformations to solve for the spin wave spectrum of an
easy-plane XXZ magnet. Much of this was straight bookwork, and actually
(in slightly different notation) was covered in the revision classes. Parts (a,
b) focused on classical ground states; most students successfully attempted
these, though the explanations of spontaneous symmetry breaking were
occasionally spotty. Part (c) was a written answer on the nature, usefulness,
and complications of Holstein-Primakoff transformations. Many students
struggled to give cogent and complete answers here, with only a handful
providing enough information to obtain the full 4 marks. Parts (d) and
(e) involved implementing the Holstein-Primakoff expansion to find the
linear spin-wave Hamiltonian, and finding its Fourier transformation. The
overwhelming majority of students scored full marks on part (d), and every
student completed part (e) perfectly (though this is unsurprising, since the
answer was stated in the question). The final section, part (f) consisted
of implementing the Bogoliubov transformation. Leniency was exercised
even for not-quite-correct choices of the Bogoliubov transformation, but
many students stumbled when extracting the spin-wave dispersion. A
key mistake (surprisingly) was in sloppy Taylor expansions: students ne-
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glected to keep track of O(k2) terms in the expansion of cos2 k. This led to
erroneous results for the spin-wave speed vs for ∆ < 1, but in many cases
such mistakes could have been easily caught by observing that the correct
answer for vs must vanish as ∆→ 1−.

Collisionless Plasma Physics

The standard of the answers in this exam were generally high. All ques-
tions were to be attempted. The difficulty of the questions was set at the
correct level.

Question 1.

In part a) some candidates forgot to supply the requested sketches, or drew
them incorrectly. The proofs in b) and c) were generally completed well.
In part d) some candidates were not able to find Umin and Umax correctly.
In part e) those candidates who had difficulties in part d) struggled to give
clear answers. Finally, in part f) most candidates were able to find the
distribution function, although most candidates did not attempt to use the
method of characteristics, but instead opted to find and solve an ODE for
f (z). Most candidates failed to notice that µmin must be positive definite to
avoid unphysical divergences in integral for the particle density.

Question 2

All candidates found the correct result in part a). Part b) was largely
bookwork. In part c) most errors stemmed from not keeping track of the
sign of ω′

∗,s. Few candidates realised that the drift wave propagates in the
−ẑ direction. The proof in part d) was bookwork. Some candidates lost
marks because of sign errors, and an incorrect description of the η � 1
expansion. Part e) was generally answered poorly, with few candidates
obtaining the correct result. Some candidates made the error of using an
inconsistent dominant balance to solve the polynomial equation, although
the most common errors were in manipulation. Finally, few candidates
were able to obtain a fluid equation for both the temperature and the
density in part f), and only limited physical descriptions were given.

Question 3

Part a) was bookwork. In part b) some candidates made the unjustified
assumption that ωR � ωUH, ωL, and hence, they did not calculate the
wave number correctly. In part c) the most common errors were a lack of
discussion of the phase of the wave amplitude, misidentifying the reason
for the undetermined constant in the solution, and failing to give a correct
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derivation for the modulus of the wave amplitude. Part d) was generally
completed with only minor errors. Part e) was bookwork, with several
candidates performing the matching correctly. However, some candidates
made an error of sign in defining the boundary layer length scale. Finally,
in part f) only some candidates could argue whyω > ωR would be desirable
for experimental measurements using X-modes.

Disc Accretion in Astrophysics: Theories and Applications

The results seem quite high; this is not because the exam was too easy, but
because all candidates deserved such high marks.

There is one unfortunate error in question 2 (and the solution), the second
term in the solution given to the second part should have a “3” in the
numerator, not a “9”. All the students got this right, but probably wasted
some time trying to find a mistake they did not make.

Galactic and Planetary Dynamics

This project was an investigation of mean-motion resonances in the re-
stricted 3-body problem. Parts (i)–(iii) were essentially bookwork and
were answered very well. Part (iv) involved applying this bookwork to
construct an averaged Hamiltonian and, again, candidates did well here.
The numerical calculations in Part (v) proved more challenging though.
Most candidates could construct a decent integrator, if only on paper. Only
the very best could use their integrator to demonstrate that the averaged
Hamiltonian found in Part (iv) does provide a good description of orbits
near the 3:2 resonance of the original Hamiltonian.

Groups and Representations

Question 1: This was a question testing some basic knowledge on repre-
sentations and featuring applications of Schur’s Lemma. It was tackled by
21 students and with an average of 21.7 out of 25 marks was completed
extremely well.

Question 2: In this question students had to work out the representation
theory of the group S3, given as a two-dimensional matrix representation,
and apply their results to a couple of given representations. This question
was chosen by all students and was completed extremely well. The few
problems which arose were usually related to part (d), where some had
problems extracting the irreducible representation content correctly and

10



struggled to find the singlets.

Question 3: This question dealt with the group SU(3)× SU(3) and its sub-
group SU(3)×SU(2) in view of a possible unification group for the standard
model. Main difficulties were to extract the correct U(1) and compute its
charges in part (d) and to carry out a meaningful discussion about the
possible usefulness as a unifying group in part (e).

Question 4: This question was exploring the representation theory of
SU(4) and the possible use of this group as a quark flavour symmetry. No
particular part of the question caused excessive problems and loss of marks
usually resulted from smaller problems, such as identifying the correct
basis of generators in part (a), finding all the correct representations and
their associated tensors in part (b) and coming up with a fully satisfactory
interpretation of results in parts (d) and (e).

Kinetic Theory

Question 1: The overall standard was high. Several candidates produced
complete or near-complete solutions.

Part (a) was mostly done well. A few candidates forgot that the temper-
ature is the moment with respect to |v − u|2 rather than |v|2, and a few
omitted the 1/ρ and 1/(3ρ) normalising factors.

Part (b) is tackled most simply by multiplying the Boltzmann equation
by 1 + log f , since ∂t( f log f ) = (1 + log f )∂t f , and similarly for ∇( f log f ).
Several candidates multiplied by log f , then either used the mass con-
servation equation or simply lost the remaining terms. The result S ≤ 0
holds for all f , but a few candidates expanded for f close to f0. The sim-
plest approach observes that log f0 is a sum of collision invariants (a few
candidates incorrectly wrote that log f0 is proportional to |v|2) and that
(log f − log f0)( f − f0) ≥ 0.

Part (c) Several candidates wrote down mass and momentum conservation
equations with unevaluated integrals containing the Lorentz force. Deriv-
ing the mass conservation equation motivates writing the Lorentz force
term as the divergence ∇v · ((E + v × B) f ). This simplifies the derivation
of the momentum and momentum flux evolution equations. Some candi-
dates lost terms by trying to integrate by parts in vector (dyadic) notation,
then reinstated the missing terms at the last step to match the given result.

Part (d) Many candidates incorrectly asserted that Qi jk vanishes, not that
∂kQi jk vanishes because Qi jk is spatially uniform (as f is). Several candidates
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just wrote down the displayed equation, with no attempt to evaluate the
ΠikεkjlBl term and its transpose for the given B. A few candidates calculated
the eigenvalues of the displayed 3× 3 matrix containing components of T.
Instead, one first needs to formulate a matrix equation with the components
of T as the right-hand side. The displayed matrix has no zz component
and zero trace, so Tzz and Txx +Tyy both decouple and decay like exp(−t/τ).
Several candidates made these observations, perhaps inspired by thinking
about conservation of energy under collisions. The remaining system for
Txy and N = Txx − Tyy has separable solutions proportional to exp(σt) with
σ = −1/τ ± 2iB. For spatially uniform solutions, the mass and momentum
conservation equations reduce to ∂tρ = 0 and ∂t(ρu) = ρu × B. Both are
compatible with u = 0.

Question 2: Question 2 appears to have challenged the students reasonably.

(a) Nearly everyone understood that the way to get these equations was
by taking moments of the kinetic equation.

(b) Nearly everyone understood that electron inertia could be neglected.
Some, not all, also realised that multiplying by v and integrating would
establish the balance between electric force and electron pressure gradient.
There was some confusion about whether the key distinguishing feature
between ions and electrons was that ions were assumed cold or that elec-
trons had smaller mass and streamed quickly across perturbations (the
latter of course).

(c) Quite a few students failed to see that using E = −∂ϕ/∂x led to the
equation for δ fe being instantly integrable, δ fe = eϕ f0e/Te, and that to
prove isothermality of the electrons all one needed to do was take the den-
sity and pressure moments of this result. There were some unnecessarily
complicated derivations, some of them partially wrong.

(d) Surprisingly few students realised that the Poisson equation coupled
with the assumption kλDe � 1 was the way to prove that δne = Zδni. Most
figured out though how the wave equation was supposed to emerge and
that the waves it described were sound waves.

(e) Very few provided a clear and crisp answer to this question. The sub-
stantive issue was the lack of clarity that there were two types of Landau
damping, on electrons and on ions, that the electron damping was due to
very slow electrons and so neglected by the assumption that v ∼ vthe in
the electron equation, that the ion damping was neglected when δpi was
dropped, on account of waves being much faster than the ions, and that
the latter approximation depended on the assumption Te � Ti, with heavy
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damping expected otherwise. Some students offered irrelevant regurgita-
tion of lecture material about the ion acoustic instability.

Question 3: The standard was pleasantly high, Parts(a)–(c) were very well
answered, followed by graceful degradation as they moved from sections
(d) to (f).

Quantum Field Theory

Question 1. This question was well done. Most candidates knew the
Feynman Rules and were able to apply them to the scattering process.
The most common errors were to omit a possible channel in the fermion-
fermion and fermion-antifermion scattering processes, and to omit to keep
track of spinor indices in calculating |M|2. There were many good attempts
at the last part of the question on naive scaling dimension; a few candidates
resorted to producing formulae from memory without justification.

Question 2. The first part of the question was very well done with almost all
candidates able to calculate the required commutators. However very few
candidates realised that to demonstrate the operation ofC π

2
one should just

set s = ±1 in the results already derived which was disappointing. There
were a few good attempts at deriving the Parity operator in the last part,
but overall candidates found this question hardest of the three.

Question 3. This question was well done. Most candidates did a good job
of demonstrating the required results in the first part. The explanations of
the origin of combinatorial factors for Feynman diagrams were less secure.
Many candidates clearly in fact understood this well and were able to
calculate the factors in the last part in a manifestly correct way. However
some candidates failed to show clearly how they had actually computed
the factor claimed, and some just quoted the answers.

Quantum Matter

This exam worked fairly well, with a wide distribution.

The first question was the easier one. Almost all of the students were
able to do parts a-c near perfectly. Part d is a generalization of what we
did for homework, and about half of the students were able to handle
it perfectly. On part (e) while many students knew roughly what to do,
no one managed to solve the problem completely, despite the fact that it
is only two lines of calculation! (Perhaps because this was less familiar
territory).
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The second question was harder. The earlier parts should have been fairly
easy but did give some people trouble. The question was very similar to
one of the homework problems. A fair number of students did not manage
to correctly solve the noninteracting electron problem in part (b). Many
students did not realize that a spin triplet can have Sz = 0, getting the last
part of (b) wrong. For (c) there were a lot of errors of factors of 2 related
to overcounting Hartree-Fock energy (Koopmans’ factor of 2). I expected
part (d) to be difficult, but it was nice to see that several students set it up
correctly.

Radiative Processes and High Energy Astrophysics

Radiative Processes

This question was generally answered very well. A few candidates made
typographical errors when writing down the general form of the equation
of statistical equilibrium. A few mistakes were made in the final part of
the question, which involved deriving a formula for the flux ratio of two
emission lines, correcting the observed ratio for dust extinction, and finally
re-arranging to measure the temperature of the observed nebula. The two
mistakes made were: 1) incorrect formula for C13/C12 (wrong statistical
weights in the expression), and 2) incorrect treatment of dust extinction
(essentially assuming that magnitude relates to flux as mλ = − ln[Fλ/Fref

λ ]
instead of mλ = −2.5 log10[Fλ/Fref

λ ], which introduces a small error).

High Energy Astrophysics

This was generally answered very well. Every candidate was able to
derive the correct expressions. A few marks were dropped due to the final
numerical answer being incorrect. Candidates struggled most with the
final part of the question. Most recognised that the inclusion of general
relativity would bring in both gravitational redshift and light bending, and
most recognised that the iron line profile should be the same for AGN and
XRBs, although there was the odd mistake. The point that no candidate
got: we assume the disc to be radiation pressure dominated, which is fine
for L = 0.5LEdd, but is not at all a good approximation for L = 10−5LEdd (gas
pressure will likely dominate in this regime). However partial credit was
given for those who mentioned that a thin disc may not be present for such
a low luminosity.

There was, unfortunately, a typo in the question (my apologies). Candi-
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dates were asked to show that the maximum Doppler shift is

δmax =

√
1 − rg/r

1 − (r/rg) sin i
. (1)

However, the correct expression is

δmax =

√
1 − rg/r

1 − (rg/r)1/2 sin i
. (2)

Fortunately, every candidate derived the correct answer, and so the mistake
did not have any effect on the final marks. There was a query about the
formula in question, but this corresponded to the numerator, in which
there was no mistake.

The‘correct’ formula is still not accurate in reality, but this is a feature of the
question: the equation is derived using Special Relativity. Once General
Relativity is used instead (as the candidates are prompted to consider in the
question), the equation is modified. Gravitational redshift means that the
numerator goes from

√
1 − rg/r to

√
1 − 3rg/r (one candidate, impressively,

derived exactly this from the Schwarzschild metric), and light bending
modifies the denominator.

Supersymmetry and Supergravity

The students did very well overall.

There was some confusions in Q2 d) and Q2 e). Recall that the condition to
have a supersymmetric vacuum is ∂W

∂φ = 0 simultaneously for every φ. The
condition ∂V

∂φ = 0 is the condition to have a vacuum at all (supersymmetric
or not), and the former condition implies the latter since V = |∂W|2.

C3.4: Algebraic Geometry

The paper was done very well by 12 candidates.

Question 1 had 11 answers at an average of 21 marks. Candidates lost
some marks on imprecise explanations of easy checks. In part (d) some
candidates explained what are the closed subvarieties of A1 but missed
identifying the irreducible ones. In part (e) some candidates thought (0, 0)
was a separate component; others failed to prove that their proposed com-
ponents are indeed irreducible. One of the equations in (e) had an obvious
misprint that was corrected by all candidates (or not even noticed).
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Question 2 had 8 answers, also at an average of 21 marks. Most of those
who lost marks did so on the computation in (e). There is in fact a condition
missing in (e), in that it should be assumed that the quadrics define a
reduced ideal; most candidates tacitly assumed this.

Question 3 had several answers lacking a full explanation in (b) of the
fact that the map π was a morphism of quasiprojective varieties. Some
candidates failed to check that in (c)(i) their proposed inverse does indeed
provide an inverse.

C3.1: Algebraic Topology

Almost all candidates picked Q1, and then about two thirds of students
picked Q3 instead of Q2. The standard of almost all scripts was very high.
In Q1(b) some candidates did not carefully show functoriality. In Q1(c)
there is a difference in the homology and cohomology calculations, but
some leniency was allowed if candidates checked the homology version of
the Kunneth theorem instead of the cohomology version. Q2(c ) candidates
sometimes failed to carefully explain why the cup product lands in the
correct chain complex. Q2(d) requires a commutative diagram, relating
the map from (c) with the usual cup product on X, and only one candidate
did this correctly. In Q3(d) some candidates did not carefully justify why
the preimage of a point is a finite set. Almost no candidate explained in
a satisfactory way why the local degrees are all +1. They did not notice
that the previous step in (c ) had built the pull-back orientation precisely
so that the orientation generator of X maps to that of Y, locally.

C5.6: Applied Complex Variables

Q1: Part (a) was generally well done, although many candidates failed to
explain why the majority of the real axis maps to straight-line segments
(only explaining what happens at the pre-images of the vertices). In (b),
there were quite a few difficulties with evaluating the constants P, Q and
λ. Part (c) was well done. For part (d), a number of candidates did not
adequately explain their sequence of conformal mappings, which in some
cases was wrong, but many got the correct mapping of the hodograph
plane to the upper half plane. The last part was naturally done by those
who had successfully found λ in part (b).

Q2: Parts of this question were done well, though some struggled with part
(b), and the very last part of (d) was not solved by anyone. Part (a) was fine.
In part (b), quite a number of candidates assumed that w̃− = −w̃+ when
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calculating the integral (as for most examples seen during the course),
despite having quoted the correct expressions for those two quantities.
Part (c) was done easily by most candidates. In part (d), most realised they
could use the result from part (b), and obtain the required result by taking
H = 0. A few candidates had the right idea for the last part, but chose
expressions for H(z) that did not tend to zero at infinity as required.

Q3: This was marginally the most popular question and was done well,
although the final answer was found by only a couple of candidates. There
were few difficulties with parts (a), (b) and (c), although some failed to ad-
equately explain why the given expression holds on the strip in part (c).
For part (d), the Wiener-Hopf argument was explained well by many can-
didates, but evaluating the integral resulted in many errors keeping track
of the square roots and ‘i’s. A few ended up with the correct expression
but multiplied by a complex number (whereas the solution should clearly
be real).

C2.7 Category Theory

There were plenty of answers demonstrating very good understanding of
the material, though none was perfect.

Question 2 was the most straightforward question and there were attempts
from almost all the candidates, some of which were very good though
none obtained full marks. There was a minor misprint in 2 (b) (iv), where
a superscript ‘op’ was missing in HomCat(Cop, Set), but it seemed clear
that it did not affect any candidates adversely; indeed only one gave any
indication of noticing it.

Question 1 contained a more substantial amount of unseen material. There
were many very serious attempts, and each part of the question was an-
swered correctly by several candidates, but no candidate gave a completely
successful solution to the whole question. In 1(a) it was disappointing to
see that, just as last year, few candidates could give an accurate construc-
tion for coequalisers in Set.

Question 3 did not attract many attempts. The bookwork part of the
question was answered well, but the rest of the question, especially (b)(iv),
caused difficulties.
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C6.2: Continuous Optimisation

All questions were attempted by various students. The performance was
particularly good especially on Problem 2. Problem 1 was also very ac-
cessible, with a trickier bit in part b) and incomplete answers in part c).
Problem 3 was not difficult and the students did well on part a), apart
from some incomplete answers arguing uniqueness or existence. The the-
oretical part in Problem 3 was generally incomplete, probably due to time
constraints.

C3.3: Differentiable Manifolds

Question 1. Most students lost a mark on part (a) because they missed
out some detail in the definitions, typically in the definition of the free and
properly discontinuous action of a group by diffeomorphisms. Part (b) was
mainly done well, with a few students losing marks through small slips in
showing that the volume form defines an orientation. Almost all students
had the right idea for (c)(i), but most commonly lost marks for not showing
that the orbits of the open sets they chose were disjoint, and for not observ-
ing that fr(z) ∈ S3 for z ∈ S3. Part (c)(ii) was similar in that most students
had the right idea and approach, but lost marks through lack of details; a
common error was not showing that fr is orientation-preserving correctly,
and not showing that the 3-form defined on the quotient is nowhere van-
ishing. About half of the students who attempted this question had the
right idea for (d), all using M � RP2

×S
1 as the example, but did not fully

justify their answer. This was the least popular question and produced a
wide spread of marks, from high to low.

Question 2. Part (a) was done well. A number of students dropped marks
in (b), typically by not observing that the putative vector fields and/or dif-
feomorphism they constructed are smooth. Part (c) was mainly done very
well, but students lost marks in not explaining that for a diffeomorphism
the induced map on de Rham cohomology is an isomorphism. Part (d)(i)
was done very well by almost all students, with marks only lost for not
referring back to the criterion for parallelizability in (b) and for not check-
ing the homotopy they construct is well-defined. Whilst most correctly
students correctly understood that S2

× R is parallelizable in (d)(ii), most
did not justify it adequately. This was the most popular question, with all
but one student attempting it. There was a spread of marks, but no low
marks (below 10).
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Question 3. Part (a) was usually done well, though some students dropped
marks by not stating the criterion for a map to be a local diffeomorphism
clearly. Most students dropped a mark on part (b), usually by not defin-
ing the interior product. Part (c)(i) was done well, except some students
thought the flow was a vector field, even though they defined it correctly
in (a). Part (c)(ii) created a great variation in responses, with most diffi-
culties arising in the correct computation of the Lie derivative from the
definition, but also in computing the exterior derivative and the interior
product correctly. In part (d), most students had the right idea, but some
made errors in their computations. There was a spread of marks, but also
no low marks (below 10).

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question was attempted by 38% of candidates. It revealed a good
spread of abilities across those who attempted it. Q1 (b) was for the most
part well answered, although some candidates neglected to consider the
normal component of the gradient so as to apply the second factorisation
lemma. Q1 (c) was very well answered by all who attempted it, although
some candidates neglected to provide a counterexample (i.e. computed
the determinant of the matrix to be zero, without exhibiting an element
of the kernel). Q1 (d) was quite challenging, with no student successfully
completing Q1 (d) (ii).

Q2: This question was very popular, with every candidate attempting
it. Unsurprisingly, most candidates did very well in the bookwork in
Q2 (a). Q2 (b) considered the vector-valued equations of linear elasticity;
this was handled much better than vector-valued equations in previous
examinations, and almost every student successfully integrated the grad-
div term by parts, unlike in previous years. In Q2 (b) (ii), several students
applied the fact about the Frobenius inner product twice, to replace the inner
product of the symmetric gradients with the inner product of the gradients
to acquire the familiar bilinear form arising in the vector Laplacian. The
second application of this was erroneous. In Q2 (b) (iii), surprisingly
few students used the hint to derive Young’s inequality, and many failed
to prove the required bound on the divergence. Q2 (c) was unseen but
was generally answered well, indicating a good understanding of Céa’s
Lemma. Q2 (d) was also unseen, but related to the Stokes equations
studied in lectures. It was quite poorly answered. A remarkable number
of candidates wrote down only one equation for two unknowns; others
neglected the requirement that the bilinear form be symmetric; and no
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candidate correctly identified the space for the Lagrange multiplier as
L2(Ω) instead of L2

0(Ω) (which is only appropriate in the incompressible
limit).

Q3: This question was attempted by 62% of candidates. The early parts
of Q3 (a) were answered well, but many students struggled to correctly
state the Newton–Kantorovich iteration for systems of partial differential
equations in Q3 (a) (iv). Q3 (b) (i) and (ii) were bookwork and were well-
answered, but Q3 (b) (iii) challenged those with a weaker grasp of the
inf-sup condition. Q3 (c) was a challenging question about refining the
bookwork error estimate for noncoercive problems and gave an opportu-
nity for the best candidates to distinguish themselves.

C3.2 Geometric Group Theory

Question 1: This was attempted by all candidates, with fairly complete
answers provided, in particular for the examples in the second part. Only
half of the candidates attempted the question where the isomorphisms
between two groups was to be proven by finding a finite sequence of Tietze
transformation, and that seems to show that while the formal knowledge
of this method was acquired, the intuition behind it is still lacking.

Question 2: This question was for the main part purely theoretical. Never-
theless, while most students displayed confident knowledge of everything
related to the fundamental group of a graph of groups, very few attempted
the second part of the question, requesting to provide a definition of such
a group for finite simplicial trees via a universal property.

The third part on residual finiteness was answered reasonably well.

Question 3: This question was attempted in equal measure as Question
2, and answered very well on the whole, including the parts requiring
an algorithmical approach. Surprisingly the least well answered part was
part (b), in which a simple geometric argument, relying entirely on the
geometry of hyperbolic spaces, was all that was needed.

C7.5: General Relativity I

Question 1

This question was the most popular of the three questions, and was gener-
ally done well by a lot of students. The bookwork parts ((a) and (b)) were
almost exclusively done correctly. The new parts ((c) and (d)) caused some
more problems; particularly part (d). Here, the most common issue was

20



that students were able to correctly write down expressions for the motion
of the second light signal in the form of integrals, but did not notice that,
since they were only asked to produce an answer correct to O(∆τ), they
could differentiate these expressions in ∆τ to obtain the result. Another
common mistake was, when considering the motion of the satellite, to con-
sider its radial position as a function of its proper time (that is, r(τS)) but
to neglect the dependence of the time coordinate t on the proper time τS.
This is a conceptual issue that is most likely caused by students familiarity
with flat space, where one doesn’t need to consider such things.

Question 2

This question was by far the least popular, most likely as it appears the
most technical and mathematical of the three options. However, it was
generally completed very successfully by the small number of students
who attempted it. This question did include a typo: in part (c), the order of
the arguments of λ should have been reversed, writing λ[aµ+µ′,X] instead of
λ[X,aµ+µ′]. Fortunately this did not appear to cause any confusion (although
it was commented upon by some students!), as the rest of the notation was
consistent. Where mistakes were made in this question, the typical error
was to believe that the commutator is C∞ linear (so [X, aY] = a[X,Y] for
vectors X, Y and a scalar field a, which is not true) and then to compensate
for this error by also failing to properly apply the Leibniz rule for vector
fields.

Question 3

Part (a) was done very successfully, with students demonstrating knowl-
edge of the Einstein equations and the various terms appearing in this
equation. Part (b) was also bookwork, and was done correctly by many,
although a fair number of students were confused regarding the difference
between proper time and a general affine parameter. Part (c) was done very
successfully, and part (d) caused by far the most problems for students.
Here a common mistake was to assume that a geodesic which is initially
radial will remain so – this true for the spacetime in question (which is
spherically symmetric), but required some justification (it is not true, for
example, in the Kerr spacetime). Some students attempted to solve the
geodesic equations directly instead of making use of conserved quantities,
and this inevitably led to difficulties. A few students also struggled with
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the integral that needed to be done in part (d) (i), obtaining logarithmic
expressions instead of trigonometric ones.

Summary

Overall the quality of the answers was very high. The external examiners’
considered this year’s exam to be difficult, and yet the students scored
very well – I am impressed, especially given the difficult circumstances
this year. The spread of questions attempted was as expected, and (also
as expected) the more mathematically minded students who attempted
question 2 typically did very well. In general, FHS students did slightly
better than MSc students.

C7.6: General Relativity II

• Question 1: This question was attempted by all students. Part a)
was solved correctly by the majority of students, as was part b) i),
although a few students did not notice here that the result from a)
iii) could be used. Part b) ii) was clearly the most difficult question,
very few students scored full marks here. Part b) iii) was again easier
and nearly everyone scored at least some points here, but at the same
time nearly everyone struggled with finding a spacelike geodesic.

• Question 2: This question was the least popular, it was attempted
only by a handful of students. Part a) was generally carried out very
well, but several students struggled with the concept of gauge in
general relativity in part b). Part c) was again correctly solved by
almost all students who attempted it. The last part of question 2
was the most difficult one and here only a small number of students
presented a good solution.

• Question 3: This question was attempted by nearly everyone. Draw-
ing the Penrose diagrams did not pose any difficulties for the majority
of students, however a few students struggled with defining the con-
cept of a black hole. Part b) was also executed well, but a few students
did not show that the integral curves of the normal vector field to a
null hypersurface are null geodesics. Nearly every student had the
right idea for solving c) i), although there were a few computational
errors. The determination of the causal character of the hypersurfaces
{r = const} was again done correctly by nearly everyone, but many
students struggled with the computation of the surface gravity. Most
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students gained some points for c) iii) & iv), but hardly anyone gave
full solutions here.

C7.4: Introduction to Quantum Information

Question 1
Students did very well on it and received a high average mark. Some
struggled with part (e) and confused it with Simon’s problem. Single
marks were also lost in parts (a) e.g. some students viewed the Hadamard
transformation as a preparation of an equal superposition of all states in
the Hilbert space or of entangled states and part (b) when no justification
to the minimum number of calls was provided.

Question 2

This was the most popular question. Students knew their bookwork pretty
well. Most of them found part (f) difficult for it required thinking and
explaining rather than manipulating equations.

Question 3

This was the least popular question. The bookwork parts (a-c) presented
no difficulties and students did very well on them. The most challenging
were parts (d), (e) and to some extend (f). In part (d) some students
struggled with the probabilistic nature of the algorithm and the estimates
of the success probability. In part (e) only few managed to use the spectral
decomposition to derive the required formula in few basic steps. Some
students, managed part (f) without completing part (e).

C3.5: Lie Groups

Question 1

This question was about the noncompact symplectic group Sp(2n,R). It
was the most elementary question in terms of the material covered, and
all 8 candidates attempted it, with the majority getting marks in the 18-25
range. Most candidates got through the proof that the symplectic group
was in fact a Lie group, though some were careless about quoting the
appropriate theorems to justify this. The parts of the question aimed at
understanding the algebraic structure of the group were generally done
well, though only a couple of candidates really gave a good explanation of
the geometric interpretation of the isomorphism in the n = 1 case.
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Question 2

This question, on representation theory, proved less popular. The standard
parts of the questions were done well, but putting everything together to
show nonexistence of nontrivial finite-dimensional unitary representations
of SL(2,R) proved more challenging.

Question 3

This question was on Weyl groups and maximal tori with candidates at-
taining marks in the 18-25 range. Candidates generally had a good grasp
of the maximal torus for SO(2n + 1) and how to find Weyl group elements.
The more subtle case of SO(2n) was of course harder, but some people
understood this well.

C6.1: Numerical Linear Algebra

This was generally a successful exam with a range of marks including many
high ones. There were a surprisingly large number of candidates who
made significant attempts at all three questions rather than concentrating
on two as required. Possibly because of the open book format, irrelevant
bookwork material that was not asked was described by some.

The first question on the Singular Value Decomposition was attempted
by almost all candidates and was generally done reasonably well. Some
candidates were a little sloppy with their arguments, in particular in part
(c) even if they identified a correct Polar Decomposition which some did
not. A surprisingly large number believed that the sum of the singular
values was equal to the matrix trace.

The second question on Chebyshev polynomial iterative methods was
also popular and reasonably well done. The final part was again found
challenging by many who either did not attempt it or, more usually, did
not make any headway with it.

The third question on GMRES was attempted by just under half of the
candidates and also attracted a range of marks: most attempts seem to
have been purposeful and not just rushed in the last few minutes of the
exam. The first four parts were generally well done, but the final two
unseen parts either attracted full or zero marks in general. There were
very few clean answers to the final part.
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C5.5: Perturbation Methods

Q1

While this question was not popular, it was well done in general by those
making a serious attempt. Weaker scripts did not show that the second
integral for J(x) was ord(1/[xε]). In addition, many candidates were unable
to demonstrate that the higher order terms from the power series expansion
of the exponential were consistent with the stated error bound.

Q2

This was a very popular question. In the first part, weaker scripts often
did not give correct reasoning for the error estimate though essentially all
candidates noted the importance of this result in later parts of the question.
Accurately considering the expansions with respect to the intermediate
variable in the later parts was frequently the most troublesome aspect of
the question for candidates.

Q3

Again, a popular question. The first part on multiple scales was very
well done in general. The second part, involving WKBJ expansions, was
tackled well in the earlier stages though mistakes generally emerged as the
calculation proceeded.
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