Honour School of Mathematical and Theoretical Physics Part C

 Master of Science in Mathematical and Theoretical Physics
KINETIC THEORY
 Hilary Term 2021

THURSDAY, 14TH JANUARY 2021, Opening Time: 09:30 a.m GMT

You should submit answers to all three questions.
You have $\mathbf{3}$ hours writing time to complete the paper and up to $\mathbf{1}$ hour technical time for uploading your file. The allotted technical time must not be used to finish writing the paper.

You are permitted to use the following material(s):
Calculator
The use of computer algebra packages is not allowed.

1. This question concerns a population of indistinguishable particles interacting through a pairwise potential, while also losing momentum through collisions with an otherwise inert background medium. The pairwise interactions are weak and long-range with lengthscale L. The particles have positions \mathbf{X}_{i} and velocities \mathbf{V}_{i}. They all have mass m. Their equations of motion are

$$
\dot{\mathbf{X}}_{i}=\mathbf{V}_{i}, \quad m \dot{\mathbf{V}}_{i}=-\gamma \mathbf{V}_{i}+\frac{F_{0}}{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \mathbf{F}\left(\frac{\mathbf{X}_{i}-\mathbf{X}_{j}}{L}\right),
$$

where \mathbf{F} is a dimensionless function of a dimensionless argument. A dot denotes a derivative with respect to dimensional time. The sum is taken over $j=1,2, \ldots, N$ but omits the selfinteraction term with $j=i$. The constant F_{0} sets the strength of the inter-particle forces, and the constant γ sets the rate of momentum loss through collisions with the background.
(a) [4 marks] By writing $\mathbf{X}_{i}=L \mathbf{x}_{i}$ and introducing a suitable dimensionless time variable t, derive the dimensionless equation

$$
\epsilon \frac{\mathrm{d}^{2} \mathbf{x}_{i}}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} \mathbf{x}_{i}}{\mathrm{~d} t}=\frac{1}{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \mathbf{F}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right),
$$

and give an expression for the dimensionless parameter ϵ.
For the rest of this question we will set $\epsilon=0$, and assume that the force is derived from a potential:

$$
\mathbf{F}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)=-\frac{\partial \phi\left(\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right)}{\partial \mathbf{x}_{i}} .
$$

(b) [4 marks] Show that the energy of the system,

$$
E(t)=\frac{1}{2 N^{2}} \sum_{\substack{i=1}}^{N} \sum_{\substack{=1 \\ j \neq i}}^{N} \phi\left(\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right),
$$

cannot increase over time.
(c) [5 marks] Now consider an ensemble of such systems described by a probability density function $\rho\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}, t\right)$ on a $3 N$-dimensional phase space. What symmetry property should ρ satisfy?
By considering the expected number of particles in some fixed volume Ω of phase space, derive the Liouville equation

$$
\frac{\partial \rho}{\partial t}+\frac{1}{N} \sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \frac{\partial}{\partial \mathbf{x}_{i}} \cdot\left(\mathbf{F}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \rho\right)=0 .
$$

continues on the next page ...
(d) [5 marks] Show that the reduced s-particle probability density functions $\rho_{s}^{(N)}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}, t\right)$ for an ensemble of systems of N particles evolve according to the BBGKY hierarchy

$$
\begin{aligned}
\frac{\partial}{\partial t} \rho_{s}^{(N)}+\frac{1}{N} \sum_{i=1}^{s} & \sum_{\substack{j=1 \\
j \neq i}}^{s} \frac{\partial}{\partial \mathbf{x}_{i}} \cdot\left(\mathbf{F}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \rho_{s}^{(N)}\right) \\
& +\frac{N-s}{N} \sum_{i=1}^{s} \int \mathrm{~d} \mathbf{x}_{s+1} \frac{\partial}{\partial \mathbf{x}_{i}} \cdot\left(\mathbf{F}\left(\mathbf{x}_{i}-\mathbf{x}_{s+1}\right) \rho_{s+1}^{(N)}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{s+1}, t\right)\right)=0
\end{aligned}
$$

(e) [7 marks] Now consider the limit in which the number of particles N goes to infinity. Show that the corresponding limit of the BBGKY hierarchy allows factorised solutions of the form

$$
\rho_{s}^{(\infty)}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}, t\right)=\prod_{i=1}^{s} \rho_{1}^{(\infty)}\left(\mathbf{x}_{i}, t\right)
$$

What property of the system does this represent?
[Hint: you may wish to try the case with $s=2$ first before attempting the general case.]
2. Consider a plasma consisting of Maxwellian ions (mass m_{i}, charge $q_{i}=Z e$, density n_{i}, temperature T_{i}, thermal speed $v_{\mathrm{th} i}=\sqrt{2 T_{i} / m_{i}}$) and a cold electron beam (mass m_{e}, charge $q_{e}=-e$, density n_{e}, velocity $u_{e} \gg v_{\text {the }}$-much greater than the width of the distribution).
(a) [7 marks] Starting from the standard expression for the plasma dielectric function describing infinitesimal electrostatic perturbations with wave vector k in the direction of the beam and $\propto e^{p t}$ (where t is time and p is, in general, complex), assume $|p / k| \gg v_{\text {th } i}$ and show that the dispersion relation is

$$
\begin{equation*}
1+\frac{\omega_{\mathrm{p} i}^{2}}{p^{2}}-\frac{\omega_{\mathrm{p} e}^{2}}{\left(k u_{e}-i p\right)^{2}}=0 \tag{1}
\end{equation*}
$$

where $\omega_{\mathrm{p} i}$ and ω_{pe} are the ion and electron plasma frequencies, respectively.
(b) [7 marks] Looking for solutions with $\omega_{\mathrm{pe}} \gg|p| \gg \omega_{\mathrm{p} i}$, show that there is an instability that attains its maximum growth rate at $k=\omega_{\mathrm{p} e} / u_{e}$.

Hint. You can do this either by identifying the dominant balance in the dispersion relation or by looking for a solution in the form $p=|p| e^{i \theta}$ and maximising the growth rate with respect to θ.
(c) [7 marks] Show that the maximum growth rate is

$$
\begin{equation*}
\gamma=\frac{\sqrt{3}}{2^{4 / 3}} \omega_{\mathrm{p} e}^{1 / 3} \omega_{\mathrm{p} i}^{2 / 3} \tag{2}
\end{equation*}
$$

(d) [4 marks] Is this instability kinetic or hydrodynamic? Do Landau resonances with either ions or electrons play a role? Explain your reasoning.
3. We consider a Hamiltonian system in a phase space of dimension $2 d$ with the canonical coordinates $\mathbf{w}=(\mathbf{q}, \mathbf{p})$. The system is composed of N particles each of mass m, embedded within an external potential $U_{\text {ext }}(\mathbf{w})$ and coupled to one another via the long-range pairwise symmetric interaction potential $U\left(\mathbf{w}, \mathbf{w}^{\prime}\right)$.
(a) [4 marks] The system's instantaneous state is described by the distribution function (DF)

$$
\begin{equation*}
F_{\mathrm{d}}(\mathbf{x}, \mathbf{v}, t)=\sum_{i=1}^{N} m \delta_{\mathrm{D}}\left(\mathbf{w}-\mathbf{w}_{i}(t)\right) . \tag{3}
\end{equation*}
$$

Show that F_{d} evolves according to

$$
\begin{equation*}
\frac{\partial F_{\mathrm{d}}}{\partial t}+\left[F_{\mathrm{d}}, H_{\mathrm{d}}\right]=0, \tag{4}
\end{equation*}
$$

and give expressions for the Hamiltonian H_{d} and the operator [$\left.\cdot, \cdot\right]$.
(b) [4 marks] Show that Eq. (4) exactly conserves the total energy

$$
\begin{equation*}
E(t)=\int \mathrm{d} \mathbf{w} U_{\mathrm{ext}}(\mathbf{w}) F_{\mathrm{d}}(\mathbf{w}, t)+\frac{1}{2} \int \mathrm{~d} \mathbf{w} \mathrm{~d} \mathbf{w}^{\prime} U\left(\mathbf{w}, \mathbf{w}^{\prime}\right) F_{\mathrm{d}}(\mathbf{w}, t) F_{\mathrm{d}}\left(\mathbf{w}^{\prime}, t\right) \tag{5}
\end{equation*}
$$

(c) [4 marks] The system's mean-field state is described by $F_{0}=\left\langle F_{\mathrm{d}}\right\rangle$ and $H_{0}=\left\langle H_{\mathrm{d}}\right\rangle$. State the meaning of the symbol $\langle\cdot\rangle$. Assume that the system is in an integrable equilibrium associated with some angle-action coordinates $(\boldsymbol{\theta}, \mathbf{J})$. Give two properties of angle-action coordinates. What can you say about F_{0} and H_{0} in angle-action coordinates?
(d) [2 marks] Instantaneous perturbations in the system's DF and Hamiltonian are denoted as $\delta F(\mathbf{w}, t)$ and $\delta H(\mathbf{w}, t)$. Write down the evolution equation of δF at first order in the perturbations in angle-action coordinates.
(e) [3 marks] The Laplace-Fourier transform of any $F(\boldsymbol{\theta}, \mathbf{J}, t)$ is defined to be

$$
\begin{equation*}
\widehat{F}_{\mathbf{k}}(\mathbf{J}, \omega) \equiv \int_{0}^{+\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} \int \frac{\mathrm{~d} \boldsymbol{\theta}}{(2 \pi)^{d}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\theta}} F(\boldsymbol{\theta}, \mathbf{J}, t) \tag{6}
\end{equation*}
$$

with $\mathbf{k} \in \mathbb{Z}^{d}$. Show that the evolution equation for δF can be recast as

$$
\begin{equation*}
\delta \widehat{F}_{\mathbf{k}}(\mathbf{J}, \omega)=-\frac{\mathbf{k} \cdot \partial F_{0} / \partial \mathbf{J}}{\omega-\mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J})} \delta \widehat{H}_{\mathbf{k}}(\mathbf{J}, \omega)-\frac{\delta F_{\mathbf{k}}(\mathbf{J}, 0)}{\mathrm{i}(\omega-\mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J}))}, \tag{7}
\end{equation*}
$$

and write down an expression for $\boldsymbol{\Omega}(\mathbf{J})$ that appears in this equation.
(f) [4 marks] In the long-term, the perturbations present in the system drive the relaxation of the system's overall orbital structure. Show that it is governed by

$$
\begin{equation*}
\frac{\partial F_{0}(\mathbf{J}, t)}{\partial t}=-\frac{\partial}{\partial \mathbf{J}} \cdot\left[\int \frac{\mathrm{d} \boldsymbol{\theta}}{(2 \pi)^{d}}\left\langle\frac{\partial \delta F}{\partial \boldsymbol{\theta}} \delta H\right\rangle\right] . \tag{8}
\end{equation*}
$$

(g) [4 marks] Assume that a second population of particles of individual mass m^{\prime} described by the $\operatorname{DF} G_{\mathrm{d}}(\boldsymbol{\theta}, \mathbf{J}, t)$ also orbits within the system. How does this change H_{d} ? Stating clearly all your assumptions, show that both populations undergo an orbital relaxation described by

$$
\begin{align*}
& \frac{\partial F_{0}(\mathbf{J}, t)}{\partial t}=-\frac{\partial}{\partial \mathbf{J}} \cdot\left[m \mathbf{D}_{1}(\mathbf{J}) F_{0}(\mathbf{J}, t)-\mathbf{D}_{2}(\mathbf{J}) \cdot \frac{\partial F_{0}}{\partial \mathbf{J}}\right] \\
& \frac{\partial G_{0}(\mathbf{J}, t)}{\partial t}=-\frac{\partial}{\partial \mathbf{J}} \cdot\left[m^{\prime} \mathbf{D}_{1}(\mathbf{J}) G_{0}(\mathbf{J}, t)-\mathbf{D}_{2}(\mathbf{J}) \cdot \frac{\partial G_{0}}{\partial \mathbf{J}}\right] . \tag{9}
\end{align*}
$$

[Explicit expressions for $\mathbf{D}_{1}(\mathbf{J})$ and $\mathbf{D}_{2}(\mathbf{J})$ are not required.] Give one example of an astrophysical system against which these equations might usefully be tested.

