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1. The Boltzmann equation for a function f(x,v, t) with the BGK model collision operator is

∂f

∂t
+ v · ∇f = −1

τ

(
f − f (0)

)
, where f (0) =

ρ

(2πθ)3/2
exp

(
−|v − u|2

2θ

)
,

and τ is a positive constant. The particles may be assumed to have unit mass.

(a) [6 marks] Give physical interpretations of the quantities ρ, u, θ. Explain how they are
calculated in the BGK collision operator, and derive macroscopic conservation laws for
the mass, momentum, and energy densities. How is the energy density related to θ?

(b) [7 marks] The peculiar velocity is w = v − u(x, t). What is its physical interpretation?

By considering a solution of the Boltzmann–BGK equation in the form

f(x,v, t) = F (x,v − u(x, t), t),

or otherwise, show that the Boltzmann–BGK equation becomes (in Einstein summation
convention)

∂F

∂t
+ (ui + wi)

∂F

∂xi
−
(
∂uj
∂t

+ (ui + wi)
∂uj
∂xi

)
∂F

∂wj
= −1

τ

(
F − F (0)

)
, (1)

when x, w, t are now treated as independent variables, and give an expression for F (0).

(c) [12 marks] Suppose that u(x, t) = x · A, with A a constant matrix, describes a steady,
incompressible shear flow.

Show that spatially homogeneous solutions of (1) satisfy

∂F

∂t
− wiAij

∂F

∂wj
= −1

τ

(
F − F (0)

)
.

Verify that these solutions are compatible with mass and momentum conservation. Show
further that the internal energy density ε = (1/2)

∫
dw |w|2F satisfies an equation of the

form
∂ε

∂t
= −AijPij ,

and define Pij .

Give a physical interpretation of this equation. Show that the right-hand side is non-
negative when Pij takes the form that leads to the Navier–Stokes equations.
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2. Consider a plasma consisting of electrons and ions in a one-dimensional, spatially homoge-
neous, constant in time, static (no mean flows) Maxwellian equilibrium. Allow infinitesimal
perturbations of the electron distribution function, f = f0 + δf , while assuming that the ion
equilibrium is unperturbed. Assume also small electric perturbations E = −∂ϕ/∂x and no
magnetic fields, either equilibrium or perturbed.

(a) [4 marks] Starting from the linearised, collisionless kinetic equation for the perturbed
electron distribution function, show that the perturbed electron density δn =

∫
dv δf and

perturbed electron flow velocity u = (1/n0)
∫

dv vδf (where n0 is the equilibrium electron
density) satisfy the following “hydrodynamic” equations

∂δn

∂t
+

∂

∂x
n0u = 0, (2)

mn0
∂u

∂t
= −∂δp

∂x
− en0E, (3)

where m is the electron mass, e the elementary charge and δp is the perturbed electron
pressure (provide its definition).

(b) [5 marks] Assume that the electrons have the “adiabatic” equation of state

pn−Γ = const, (4)

where p = p0 + δp and n = n0 + δn are their pressure and density, respectively, and Γ is
some exponent. Hence derive from equations (2–3) the dispersion relation for the waves
that they support. Give a physical interpretation of these waves. At this stage, what do
you expect should be the value of Γ in order for your result to agree with kinetic theory?

[Some useful definitions: electron thermal speed vth =
√

2T0/m, Debye length λD =
vth/
√

2ωp, where ωp is the electron plasma frequency, T0 equilibrium electron tempera-
ture.]

(c) [9 marks] Going back to the linearised 1D kinetic equation and assuming an initial per-
turbation with wave number k, show that the perturbed distribution function is

δfk(t) = − e

m
ϕk(t)

1− e−i(kv−ωk)t−γkt

kv − ωk − iγk
k
∂f0

∂v
+ gke

−ikvt, (5)

where gk is the initial perturbation and ωk+iγk is the complex frequency of the oscillating
mode, i.e., ϕk(t) ∝ e−iωkt+γkt. Comment on what various terms in (5) represent and how
they vary with time. Without derivation, explain physically why the waves are damped
(γk < 0), and why γk � ωk if ωk � kvth.

(d) [7 marks] Assuming ωk � kvth (equivalently, kλD � 1), and using (5), calculate δn and
δp due to nonresonant (thermal-bulk) particles. Hence show that Γ = 3, i.e., that electrons
in a Langmuir wave behave like a 1D adiabatic fluid.

[Before doing the calculation, argue why the e−ikvt terms can be dropped in the calculation
of velocity integrals, at large t. Could they have been dropped had we wanted to calculate
density and pressure perturbations due to the resonant particles with velocities near v =
ωk/k?]

Why was the damping of Langmuir waves not captured by equations (2–4)?
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3. (a) [10 marks] An equilibrium stellar system is described by the distribution function (DF)
f0(x,v) and the mean-field potential Φ0(x). Write down two equations that must be
satisfied by f0 and Φ0.

Let f1(x,v, t) be the small change in the system’s DF when it is out of equilibrium.
Obtain the equation that governs the evolution of f1 to first order in small quantities.

State three properties of angle-action coordinates (θ,J). Use these coordinates to simplify
your equation for f1.

(b) [11 marks] Fluctuations in the DF cause the equilibrium state f0 to evolve slowly. Show
that this evolution is governed by the equation

∂f0

∂t
= −i

∂

∂J
·
〈∑

n

nf̂1(n,J, t)Φ̂1(−n,J, t)
〉
,

where the hat operator is such that

ĝ(n) ≡
∫

d3θ

(2π)3
g(θ) e−in·θ.

Show that the right side of the equation for ∂f0/∂t is real and explain the significance of
its taking the form of a divergence.

(c) [4 marks] The evolution equation can be brought to the form

∂f0

∂t
= − ∂

∂J
·
(
D1(J)f0 + D2(J) · ∂f0

∂J

)
Given that f0 describes particles in thermal equilibrium at inverse temperature β =
(kBT )−1, show that

D1 = D2 ·K ,

where K is a vector function of J that should be identified.
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