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1. Kinetics of gases.

(a) A distribution of particles of unit mass evolves according to the Boltzmann equation

∂f

∂t
+ v · ∇f = C[f ]. (1)

(i) [3 marks] Show that H =
∫
f log f dv obeys the evolution equation

∂H

∂t
+∇ · J = S, (2)

where

J =

∫
(f log f) v dv, S =

∫
(log f)C[f ] dv. (3)

(ii) [6 marks] Suppose the gas is confined to a domain Ω by a boundary ∂Ω on which
the particles undergo specular (mirror) reflections. Find an evolution equation for
H =

∫
ΩH dx.

[Hint: Consider a point on the boundary with normal n. How is f for particles that
have just collided with the boundary related to f for particles that are about to collide
with the boundary?]

(iii) [4 marks] Now suppose that C[f ] is the BGK collision operator. Show that H is
non-increasing, and find the condition(s) under which H is unchanging in time.

(b) Now suppose that f represents a distribution of marked tracer particles that collide only
with a much more numerous distribution of unmarked particles through the BGK col-
lision operator with timescale τ . The unmarked particles are distributed according to
a Maxwell–Boltzmann distribution with prescribed temperature θ = 1/2 and zero mean
velocity. The number density n of tracer particles is conserved during collisions.

(i) [3 marks] Suppose in addition that f does not depend upon the y and z coordinates.
Show that the reduced distribution f =

∫
f dvy dvz evolves according to

∂f

∂t
+ vx

∂f

∂x
= −1

τ

(
f − n√

π
e−v

2
x

)
. (4)

(ii) [9 marks] Use the first two terms in a multiple-scales expansion of f to find an evo-
lution equation for n over timescales much longer than τ .

[Hint: What solvability condition(s) should you apply?]
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2. Kinetics of plasmas. Because electrons have much smaller mass than the ions, their collision
frequency in a plasma is typically much larger than that of the ions, νe � νi. In this limit,
treating electrons as collisional and ions as collisionless, it is often possible to assume that the
electrons have a Boltzmann distribution:

fe =
ne

(πv2
the)

3/2
exp

[
− 1

Te

(
mev

2

2
− eϕ

)]
≈ f0e

(
1 +

eϕ

Te

)
= f0e (1 + Φ) , (5)

where ne is the mean electron density, vthe =
√

2Te/me, me their mass, Te their temperature
(assumed constant), −e their charge and ϕ the electric-potential perturbation, Φ ≡ eϕ/Te � 1
its normalised version, assumed small, and f0e is the equilibrium Maxwellian distribution.
Thus, the perturbed electron distribution function is δfe = f0eΦ.

(a) [5 marks] Consider a spatially homogeneous hydrogen plasma consisting of collisionless
ions (protons) and Boltzmann electrons. Assume a Maxwellian equilibrium distribution
of the ions, f0i, with mean temperature Ti and density ni, and consider infinitesimal
perturbations δfi of this distribution in response to infinitesimal electrostatic perturba-
tions ϕ. Show that, in the limit kλDe � 1, where λDe is the electron Debye length, such
perturbations with wave number k satisfy

∂δfi
∂t

+ ik · v δfi = ic2
s Φ k · ∂f0i

∂v
, Φ =

1

ni

∫
d3v δfi, (6)

where cs =
√
Te/mi and mi the ion mass.

(b) [9 marks] By considering an initial-value problem for this system, derive the expression
for the dielectric function and show that the dispersion relation for the modes of oscillation
of the perturbations of this system, Φ ∝ exp(−iωt+ γt), is

1 +
Te
Ti

[1 + ζZ(ζ)] = 0, where Z(ζ) =
1√
π

∫
CL

du
e−u

2

u− ζ
, (7)

ζ = (ω + iγ)/kvthi, vthi =
√

2Ti/mi, and the integral in the definition of the plasma
dispersion function Z is taken along the Landau contour CL (you do not need to give the
justification for using the Landau contour, simply assume it is known).

(c) [8 marks] The plasma dispersion function has the following limiting forms:

Z(ζ) ≈ i
√
π − 2ζ + . . . for |ζ| � 1 and Z(ζ) ≈ i

√
π e−ζ

2 − 1

ζ
− 1

2ζ3
− 3

4ζ5
+ . . . , (8)

the latter for |ζ| � 1, |Re ζ| � |Im ζ|. In which of these limits does the dispersion
relation (7) have a solution? Find this solution, obtaining expressions for the frequency
of oscillations ω and their damping rate γ. Give a physical interpretation of the solution
that you have obtained.

(d) [3 marks] Show that your solution is valid only if the ions are sufficiently cold and derive
the condition their temperature must satisfy. Explain physically why the Landau damping
rate in this limit is much smaller than the frequency of the waves.
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3. Kinetics of self-gravitating systems.

(a) [5 marks] Let f0(J) be the distribution function (df) of an equilibrium stellar system
that has gravitational potential Φ0(x) and angle-action coordinates (θ,J). Show that if
we write the df of the perturbed model f(x,v, t) = f0 + f1(x,v, t), then to first order in
the perturbations f1 satisfies

∂f1

∂t
+ Ω0 ·

∂f1

∂θ
− ∂f0

∂J
· ∂Φ1

∂θ
= 0,

where Ω0 = ∂H0/∂J and the perturbed potential is Φ(x, t) = Φ0(x) + Φ1(x, t). Hence or
otherwise show that

f̃1(n,J, p) =
in · ∂f0∂J Φ̃1(n,J, p) + f̂1(n,J, 0)

p+ in ·Ω0
, (1)

where the meanings of a tilde and a hat should be explained.

(b) [5 marks] What physical principle is used to obtain from the last equation the expression

Φ̃1(n′,J′, p) = −(2π)3

∫
d3J

∑
n

En′n(J′,J, p)
f̂1(n,J, 0)

p+ in ·Ω0
, (2)

where E is the inverse of the “dielectric tensor”? Explain (without calculation) how from
this equation we can obtain

f̃1(n,J, p) = −(2π)3i
n · ∂f0∂J

p+ in ·Ω0

∫
d3J′

∑
n′

Enn′(J,J′, p)
f̂1(n′,J′, 0)

p+ in′ ·Ω′0
+
f̂1(n,J, 0)

p+ in ·Ω0
. (3)

(c) Fluctuations in Φ drive a diffusive flux F of the mass-bearing stars through phase space.
F is given by

F(J) = i

〈∑
n

n

∫
dp

2πi
eptf̃1(n,J, p)

∫
dp′

2πi
ep

′tΦ̃1(−n,J, p′)

〉
,

where 〈·〉 indicates an ensemble average. A population of massless tracer particles orbits
within the stellar system. Let g0(J) and g1(x,v, t) be the unperturbed and perturbed dfs
of this population.

(i) [10 marks] Show that the phase-space flux G of the tracer population is given by an
expression of the form

G = −D2(J) · ∂g0

∂J
.

[an expression for D2 is not required ]

(ii) [5 marks] Explain the physical significance of the form taken by G.
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