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1. Consider an Ising model defined on the lattice shown below (the lattice has altogether 2L sites
and we impose periodic boundary conditions)

...

σ σ σ σσ

τ τ τ

1 2 3 54

1 2 3 τ4

The energy is given by

E = −J

L∑
j=1

σjσj+1 + σjτj + τjσj+1 , (1)

where J > 0 and periodic boundary conditions impose σL+1 = σ1.

(a) [4 marks] Write down expressions for the partition function and the free energy per site
at finite temperature. Give an expression for the average of the magnetization per site

1

2L

∑
j

σj + τj

at temperature T > 0.

(b) [6 marks] Describe the transfer matrix method for calculating the partition function for
a system of spins σ1, . . . , σL on a ring (i.e. we impose periodic boundary conditions) de-
scribed by an energy of the form E =

∑L
j=1E0(σj , σj+1) with E0(σj , σj+1) = E0(σj+1, σj).

(c) [10 marks] Calculate the partition function for model defined in (1) at T > 0 by means
of the transfer matrix method. What is the free energy per site in the thermodynamic
limit?

(d) [5 marks] Calculate the thermal average of σ1 in the limit of large L. Give a physical
interpretation of your result.
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2. Consider a one-dimensional quantum spin model with Hamiltonian

H = −
L∑
i=1

JxSx
i S

x
i+1 + JySy

i S
y
i+1 + JzSz

i S
z
i+1 , (2)

where Jx > Jy > Jz > 0 and we have a spin-S on each site of the lattice, i.e. (Sx
i )

2 + (Sy
i )

2 +
(Sz

i )
2 = S(S + 1). We impose periodic boundary conditions Sα

L+1 = Sα
1 .

(a) [5 marks] What are the classical ground states of this model? (Hint: consider (Sx
j , S

y
j , S

z
j )

to be a classical vector of length S and assume translational invariance). What is the
symmetry operation that relates the ground states?

(b) [3 marks] Explain the idea of spontaneous symmetry breaking for the example (2).

(c) [4 marks] Let S̃x
j , S̃y

j , S̃z
j be spin-S operators on site j of a one-dimensional lattice.

Consider S to be large. The Holstein-Primakoff representation is defined by

S̃z
j = S − a†jaj , S̃+

j = S̃x
j + iS̃y

j =
√

2S − a†jaj aj , [aj , a
†
ℓ] = δj,ℓ.

Explain the nature and usefulness of this representation. Comment on complications that
generally could arise.

(d) [6 marks] Apply the Holstein-Primakoff representation to the Hamiltonian (2). How

should you choose the spin operators S̃α
j to be related to Sβ

j and why?

Carry out an expansion of H in inverse powers of S. Ignore the constant contribution
and drop all terms that grow more slowly than S, when S becomes large. Show that the
resulting Hamiltonian HLSW, the linear spin wave approximation to H, takes the form

HLSW =
L∑

j=1

A(a†jaj+1 + a†j+1aj) +B(ajaj+1 + a†ja
†
j+1) + Ca†jaj .

(e) [7 marks] Diagonalize the Hamiltonian HLSW (you may drop constant contributions).
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3. Consider the anharmonic oscillator

H(λ, µ) =
p̂2

2m
+

κ

2
x̂2 +

λ

4!
x̂4 +

µ

6!
x̂6.

Throughout this problem you may set ~ = 1.

(a) [4 marks] What is the path integral representation for the partition function Z(β)? What
kinds of paths are integrated over in the path integral?

(b) [3 marks] The imaginary-time Green’s function of H(0, 0) is defined as

G(0)(τ1 − τ2) = ⟨Tτ x̄(τ1)x̄(τ2)⟩β .

Explain what Tτ , x̄(τ) and ⟨⟩β mean in this equation.

(c) [3 marks] What differential equation does G(0)(τ) satisfy? What are the boundary con-
ditions?

(d) [3 marks] The generating functional for H(0, 0) is defined as

W0[J ] ≡ N
∫

Dx(τ) exp

(
−1

2

∫ ~β

0
dτ
[
x(τ)D̂x(τ)− 2J(τ)x(τ)

])
,

where

D̂ = −m

~
d2

dτ2
+

κ

~
.

The generating functional can be expressed in the form

W0[J ] = W0[0] exp

(
1

2

∫
dτdτ ′J(τ)G(0)(τ − τ ′)J(τ ′)

)
.

Give the definition of the generating functional W [J ] for H(λ, µ) and argue that

W [J ] = exp

(
−
∫ ~β

0
dτ ′

{
λ

4!~

[
δ

δJ(τ ′)

]4
+

µ

6!~

[
δ

δJ(τ ′)

]6})
W0[J ].

(e) [7 marks] Express the first order in λ and µ corrections to the partition function in terms
of the Green’s function G(0). What are the corresponding Feynman diagrams?

(f) [5 marks] Draw the diagrams describing contributions to second order in λ and second
order in µ respectively.

A15281W1 Page 4 of 4 End of Last Page


