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1. Consider basis vectors ei that are fixed in an inertial reference frame F , and corresponding
basis vectors e′i fixed in a reference frame F ′ that rotates with angular velocity Ω with respect
to F . Define the components Ai and A

′

i of a vector A by A =
∑

3

i=1
eiAi =

∑

3

i=1
e′iA

′

i.

(a) [6 marks] If the rate of change in the inertial frame F is (dA/dt)I =
∑n

i=1
ei(dAi/dt) for

time t, and the rate of change in the rotating frame F ′ is (dA/dt)R =
∑n

i=1
e′i(dA

′

i/dt),
show that

(

dA

dt

)

I

=

(

dA

dt

)

R

+Ω×A.

Starting from the Navier-Stokes equations in an inertial reference frame F , show that

Du

Dt
+ 2Ω× u+Ω× (Ω× r) = −

1

ρ
∇p+

F

ρ
,

when viewed in a reference frame F ′ that rotates with constant angular velocity Ω. Here
u is the fluid velocity, ρ the density, p the pressure, F represents applied body forces and
viscous stresses, and D/Dt = ∂/∂t + u · ∇ is the Lagrangian derivative. Identify the
effective Coriolis and centrifugal forces.

(b) [5 marks] Now consider fluid flow in a reference frame F ′ that rotates with time-dependent
angular velocity Ω = Ω(t)ẑ relative to the frame F , for some function Ω(t) and ẑ a unit
vector. Derive the corresponding momentum equation viewed in the frame F ′. If the
fluid density is approximately constant, and Rossby number is small, explain why the
equations of motion can be simplified into the form

∂u

∂t
+ 2Ω× u = −

dΩ

dt
× r−

1

ρ
∇p̃+

F

ρ
, ∇ · u = 0 (1)

for a redefined effective pressure p̃.

(c) [8 marks] It has been hypothesised that the icy moon Enceladus has an interior liquid
ocean, trapped between an inner rocky core and an outer solid ice shell. The gravitational
interactions with other planetary bodies cause the core of Enceladus to librate with Ω =
Ω0(1 + ǫ cosωt)ẑ, where Ω0, ǫ and ω are all constant. We approximate the ocean as a
thin spherical shell of fluid occupying a < r < b, for constants a and b where r is the
distance from the centre of Enceladus. Using spherical co-ordinates with pole aligned with
the rotation axis, we consider a simple model of zonally-symmetric ocean flow with all
variables independent of the azimuthal angle φ, u = uθθ̂ + uφφ̂, and radial fluid motion
neglected (ur = 0). The body force is dominated by frictional drag on the rocky core and
ice shell, which can be parameterised as F = −αρu for constant α.

Using mass conservation, show that uθ = 0. Hence determine a solution for the long-
time evolution of the azimuthal velocity component uφ in terms of t, θ, and the constant
parameters. Explain what role the Coriolis force plays in the dynamics.

(d) [6 marks] Starting from the equations (1), derive an equation for the rate of change of
the domain-integrated kinetic energy in the form,

d

dt

∫

V

1

2
ρu · u dV = Sources− Sinks,

where V is the region a < r < b. Identify expressions for the main energy sources and
sinks. What role might this energy budget play in the maintenance of the liquid ocean
on Enceladus?
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2. (a) [8 marks] Consider an inviscid shallow ocean of approximately constant density ρ on a
β-plane, occupying −h0 < z < η(x, y, t) over a flat bed with h0 constant. The overlying
atmosphere imposes a constant pressure p = patm at z = η. What are the boundary
conditions on the fluid velocity at z = −h0 and z = η?

If the layer thickness h is much smaller than the lengthscales of horizontal variation, use
a scaling argument to argue why the vertical component of the inviscid Navier-Stokes
equation (i.e. Euler momentum equation) simplifies to a hydrostatic balance. Hence
derive the shallow water equations

DHuH

Dt
+ f ẑ× uH = −g∇Hη,

∂h

∂t
+∇H · (huH) = 0,

where the horizontal velocity uH(x, y, t) = (u, v, 0), horizontal gradient∇H = (∂/∂x, ∂/∂y, 0),
f(y) is the Coriolis parameter on a β-plane, g gravitational acceleration and DH/Dt =
∂/∂t + uH ·∇H .

(b) [4 marks] Explain why f(y) ≈ βy for flows near to the equator. For such a near equatorial
flow, linearise the shallow water equations for small amplitude disturbances about a state
of rest, with η ≪ h0.

(c) [6 marks] The above linearised shallow water equations admit plane wave solutions of the
form (u, v, η) = Re {[û(y), v̂(y), η̂(y)] exp (ikx− iωt)}, where v̂ satisfies

d2v̂

dy2
+ v̂

(

ω2

gh0
− k2 −

βk

ω
−

β2

gh0
y2
)

= 0.

You do not need to derive this equation.

You are also given that the Hermite functions ψn(ξ) = Hn(ξ)exp(−ξ
2/2) satisfy

ψ′′

n + (2n+ 1− ξ2)ψn = 0,

where Hn(ξ) is the Hermite polynomial of order n, as defined by H0 = 1, H1 = ξ, and
Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ) for n > 2.

Show that the dispersion relation yields a quantised set of frequencies satisfying

(

ω2

c2
− k2 −

βk

ω

)

c

β
= 2n+ 1, (2)

for some c to be determined. Determine the characteristic lengthscale for the meridional
extent of these waves. Which of these modes permit cross equatorial flow?

(d) [7 marks] Now consider the solution branch of the dispersion relation with low frequency
waves satisfying |ω| ≪ c|k|, and n = 0. By appropriately approximating equation (2),
determine the leading order behaviour of ω as a function of k and constant parameters.
In which direction does the wave phase propagate, and in which direction does the energy
propagate?

By considering conserved quantities for shallow water flows and a suitable sketch, describe
the physical restoring mechanism responsible for the propagation of such waves.
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