
Final Honour School of Mathematical and Theoretical
Physics Part C and MSc Mathematical and Theoretical

Physics

Galactic and Planetary Dynamics

Please typeset your solutions using a font size of at least 10 pt for the main body
of your report.

The periodic cube provides a particularly simple (if unrealistic) arena for study-
ing stellar dynamics. Many of its properties have been worked out by Weinberg
(1994, ApJ 410, 543) and Magorrian (2021, MNRAS 507, 4840). In this minipro-
ject you will use it to investigate one aspect of relaxation in stellar systems. You
should read the preceding papers carefully before starting work on the project.

(i) The listing overleaf presents a simple N -body code that follows the evolution of
N stars in the periodic cube, each having mass m = M/N . What assumptions
does it make about the initial phase-space distribution of stars? What does it
assume about their interaction potential? Explain why the value of the timestep
chosen for integrating orbits is reasonable for this system.

(ii) The program outputs the evolution of the mean-square change in stars’ veloci-
ties,

∆v2(t) ≡ 1

N

N∑
n=1

(vn(t)− vn(0))2. (1)

By running it for different cube masses M and plotting the results, show –
at least for 10 . t . 100 and for masses M . 0.1(2π)2, where M and t
are expressed in the same units as used in the code – that ∆v2(t) increases
approximately linearly with time,

∆v2(t) ' constant× M2

N
t. (2)

Explain this scaling with M and N qualitatively. Why does it break down for
larger values of M?

(iii) Now consider the situation in which an ensemble of cubes are prepared, each
having total mass M generated by N equal-mass stars drawn from a common
distribution function F (v). Stating clearly any assumptions that you make, but
making as few as you can about F (v), derive an expression for the ensemble-
averaged ∆v2(t) in terms of N , M and F (v). Compare the evolution predicted
from your expression against your measurements from part (ii) above.

(iv) In setting up the simulations it is assumed that the joint N -particle distribution

function is of the form FN (x1,v1, ...,xN ,vN) =
∏N

n=1 F (vn). Is this relation
maintained as the system evolves? If not, outline two ways in which deviations
from it might be quantified from the simulations. [You are not expected to
implement these!]

1

https://ui.adsabs.harvard.edu/abs/1993ApJ...410..543W/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.4840M/abstract

#! / u s r / b i n / en v p y t h o n 3

S im p l e N=b o d y c o d e f o r t h e p e r i o d i c c u b e . You can d own l o a d t h i s s c r i p t f r om
h t t p s : / / www=t h p h y s . p h y s i c s . o x . a c . uk / p e o p l e / J o h nMa g o r r i a n / cm21 / c u b eN b o d y . py
To run i t you w i l l n e e d p y t h o n 3 and numpy : s e e h t t p s : / / numpy . o r g / i n s t a l l /

import numpy as np
pi = np . pi

c lass Poten t i a lCa l cu l a to r :
def i n i t (s e l f , nmax , nx=64):

s e l f . nx = nx
s e l f . dx = 2* pi /nx
s e l f . f f t k e r n e l = np . z e ro s ((nx , nx , nx))
for n1 in range (0 , nx) :

n1sgn = n1 i f n1<nx/2 else n1=nx
for n2 in range (0 , nx) :

n2sgn = n2 i f n2<nx/2 else n2=nx
for n3 in range (0 , nx) :

n3sgn = n3 i f n3<nx/2 else n3=nx
nsq = n1sgn **2 + n2sgn **2 + n3sgn **2
i f nsq>0 and nsq<nmax**2+0.1:

s e l f . f f t k e r n e l [n3 , n2 , n1] = =4*pi /nsq ;
s e l f . mesh = np . z e ro s ((nx , nx , nx) , dtype=f loat)

def p t l e s 2d en s i t y (s e l f , xs , ms) :
ndxs = (xs/ s e l f . dx) . astype (int)
for (ndx , mfac) in zip (ndxs ,ms/(2* pi)**3) :

s e l f . mesh [ndx [0] , ndx [1] , ndx [2]] += mfac

def dens i ty2pot (s e l f) :
f f tmesh = np . f f t . f f t n (s e l f . mesh)
f f tmesh *= s e l f . f f t k e r n e l
s e l f . mesh = np . f f t . i f f t n (f f tmesh) . r e a l * s e l f . nx**3

def pot2acc e l s (s e l f , xs) :
mesh , nx , dx = s e l f . mesh , s e l f . nx , s e l f . dx
mesh = s e l f . mesh
ndx = (xs/dx) . astype (int) .T
return =np . array ([

mesh [(ndx [0]+1)%nx , ndx [1] , ndx [2]] = mesh [(nx+ndx[0]=1)%nx , ndx [1] , ndx [2]] ,
mesh [ndx [0] , (ndx [1]+1)%nx , ndx [2]] = mesh [ndx [0] , (nx+ndx[1]=1)%nx , ndx [2]] ,
mesh [ndx [0] , ndx [1] , (ndx [2]+1)%nx] = mesh [ndx [0] , ndx [1] , (nx+ndx[2]=1)%nx]]) .T/(2*dx)

def a c c e l s (s e l f , xs , ms) :
””” G i v en a d i s t r i b u t i o n o f p a r t i c l e s a t l o c a t i o n s ’ x s ’ h a v i n g ma s s e s ’ ms ’ ,
c a l c u l a t e t h e c o r r e s p o n d i n g p o t e n t i a l and r e t u r n t h e a c c e l e r a t i o n e x p e r i e n c e d b y e a c h p a r t i c l e . ”””
s e l f . mesh *= 0
s e l f . p t l e s 2d en s i t y (xs ,ms)
s e l f . dens i ty2pot ()
return s e l f . po t2acc e l s (xs)

i f name == ” main ” :
MJeans = 2* pi **2
nmax = 4
N = 100000
nstep , dt = 5000 , 0 .02
M = 0.01*MJeans

I n i t i a l c o n d i t i o n s . P o s i t i o n s xs , v e l o c i t i e s v s , ma s s e s ms .
dv= np . array ([1 . 0 , 1 . 0 , 1 .0])
xs = np . random . uniform (0 ,2* pi , s i z e=3*N) . reshape (N, 3)
vs = dv*np . random . normal (l o c =0, s c a l e =1, s i z e=3*N) . reshape (N, 3)
ms = np . ones (N)*M/N

vs0 = vs *1 .0 # make a c o p y o f i n i t i a l v e l o c i t i e s
mesh = Poten t i a lCa l cu l a to r (nmax)
for i s t e p in range (nstep) :

t = i s t e p *dt
xs += 0.5* dt*vs
xs = np . fmod (4* pi+xs ,2* pi) # map t o [0 , 2* p i)
vs += dt*mesh . a c c e l s (xs ,ms)
xs += 0.5* dt*vs
print (t , np . std (vs=vs0)**2)

2

