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Galactic and Planetary Dynamics

The steps for each part of the miniproject are for your guidance; if you wish
to take an alternative route to the desired goal, you are free to do so. But,
if you follow the suggested route and find yourself unable to carry out any
particular step, you may simply assume it so that you can continue with the
miniproject, but should make this assumption clear in your presentation.

Please write or print on one side of the paper only.

The purpose of this miniproject is to demonstrate the use of Lie transforms
in constructing superconvergent expansions in perturbation theory. The first
few steps have been covered in the lecture course, but you should nevertheless
provide complete answers in your report. You might find it helpful to do some
further reading before tackling the later steps. Possible references include:

• Binney J., Tremaine S., 2008, Galactic dynamics

• Cary J.R., 1981, Physics Reports, 79, 129–159

• Chirikov B.V., 1979, Physics Reports, 52, 263–379

• Lichtenberg A.J., Lieberman M.A., 1992, Regular and Chaotic Dynam-
ics

• Morbidelli A., 2001, Celestial mechanics
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Part 1: a perturbed simple harmonic oscillator

(a) Outline the construction of angle-action variables (θ, J) for the simple
harmonic oscillator Hamiltonian,

H0(x, p) =
1

2
p2 +

1

2
ω2
0x

2,

and show that H0(J) = ω0J .

(b) Now consider the pendulum Hamiltonian,

H(ϕ, p) =
1

2
p2 − ω2

0 cosϕ.

Plot contours of constant H in the (ϕ, p) phase plane, indicating librating and
circulating orbits and the separatrix. Obtain an expression for the oscillation
frequency about the lower equilibrium point ϕ = 0 as a power series in
E ≡ H + ω2

0, including terms up to O(E3).

(c) When expressed in terms of angle–action variables for the simple harmonic
oscillator, show that the pendulum Hamiltonian becomes

H(θ, J) = H0(J) +H1(θ, J),

in which H0 is the simple harmonic oscillator Hamiltonian and H1(θ, J) is
a perturbation for which you should obtain an expression. Verify that the
angle-averaged perturbation is

H̄1(J) ≡ 1

2π

∫ 2π

0
H1(θ, J) dθ

= ω2
0

[
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J

ω0
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288
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− 1

9216

(
J

ω0

)4

+ · · ·
]
.
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Part 2: perturbation theory

Now let us construct first- and second-order approximations to the angle–
action coordinates for the pendulum. In the following we use (θ0, J0) for the
angle-action coordinates of the simple harmonic oscillator and (θ1, J1) for our
first-order approximation to the angle-action coordinates for the pendulum.
The pendulum hamiltonian is then one function, H0(θ0, J0), of the angle-
action coordinates for the simple harmonic oscillator, and another function,
H1(θ1, J1), of our approximate angle-action coordinates for the pendulum.
We also introduce the Lie derivative,

LAf ≡ [f, A],

of the function f along the flow generated by the “Hamiltonian” A.

(a) By introducing factors of ε at appropriate places and then considering
limiting values of ε, explain why we may assume that old and new coordinates
are related via (

θ0

J0

)
= exp[εLχ1 ]

(
θ1

J1

)
,

with
H1(θ1, J1) = eεLχ1H0(θ1, J1),

for some function χ1(θ
1, J1). Hence show that

H1 = H0 + εH1 + ε[H0, χ1] + ε2[H1, χ1] +
1

2
ε2[[H0, χ1], χ1] +O(ε3),

indicating clearly the arguments of the functions on the right-hand side.

(b) For the pendulum Hamiltonian find a choice of χ1 that eliminates the
angle dependence of the (J/ω)2 term in H1.

(c) This idea can be generalized to higher order by considering further trans-
formations of the form(

θr−1

Jr−1

)
= exp[εLχr ]

(
θr

Jr

)
, Hr(θr, Jr) = eεLχrHr−1(θr, Jr),

in which improved estimates, (θr, Jr), of the angle-action coordinates are
constructed from the previous ones, (θr−1, Jr−1). Construct a function χ2

that eliminates the angle dependence from the (J/ω)3 term in H2(θ2, J2).
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(d) Ignoring angle-dependent terms and explaining the method you use, over-
lay contours of constant H1 (from part (b) above) and of constant H2 (from
part (c)) in the (ϕ, p) phase plane plotted in Part 1. How well does the
oscillation frequency in each case match the power-series expression for the
true pendulum Hamiltonian?

Part 3: superconvergent perturbation theory

Finally, consider the general case in which we have a Hamiltonian of the form

H(θ,J) = H0(J) +
∞∑
n=1

εnhn(θ,J).

Let T (ε) be a mapping to new angle–action coordinates (θ′,J′) defined im-
plicitly by (

θ

J

)
= T (ε)

(
θ′

J′

)
.

(a) Explain why the Hamiltonian expressed in terms of these new coordinates,

H ′(θ′,J′) = H ′0(J
′) +

∞∑
n=1

εnh′n(θ′,J′),

is given by H ′ = TH.

(b) Now expand T in powers of ε in two different ways:

T =
∞∑
n=0

εnTn = exp

[ ∞∑
n=1

1

n
εnLn

]
,

with Ln• ≡ [•, χn] and T0 = 1. By differentiating T once with respect to ε
and equating powers of ε, or otherwise, show that the Tn for n > 0 obey the
recurrence relation

nTn =
n−1∑
m=0

Ln−mTm.

(c) By differentiating the relation H ′ = TH with respect to ε, show that

[χn, H0] = n(h′n − hn) +
n−1∑
m=1

(Ln−mh
′
m +mTn−mhm).
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(d) Suppose that the functions h1,...,hm−1 are independent of angle θ. Ex-
plain why, by making an appropriate choice of χm, ..., χ2m it is possible
to transform to new angle-action coordinates (θ′,J′) in terms of which the
Hamiltonian becomes

H ′(θ′,J′) = H0(J
′) +

2m−1∑
n=1

εnh′n(J′) +
∞∑

n=2m

εnh′n(θ′,J′).

Outline the significance of such transformations for systems having two or
more degrees of freedom.
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