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Section A: Accretion Disc Physics

Please answer all questions in this section.

1. Consider an axisymmetric accretion disc with surface density Σ(R, t) orbiting around a central
body with angular velocity Ω(R). By considering the disc as a set of interacting rings, or otherwise,
show that
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where u(R, t) is the radial velocity of the matter and Gtot(R, t) is the total torque exerted by the
disc outside of radius R on the disc inside of that radius. [10]

2. Consider the accretion disc of question 1 in orbit around a central object of mass M , where
radial pressure gradients are negligible and the mass of the accretion flow is negligible. Further,
assume that this accretion disc is subject to the sum of an internal viscous torque, Gν(R, t) =
2πR3νΣΩ′ (where ν is the kinematic viscosity and primes denote differentiation with respect to R)
and an external torque, Gm(t), due to large-scale magnetic fields that connect it with the central
object. Show that the evolution of the disc is governed by

∂Σ

∂t
=

3

R

∂

∂R

(

R1/2 ∂

∂R
(νΣR1/2)

)

−
1

πR(GM)1/2
∂

∂R

(

R1/2 ∂Gm

∂R

)

.

[10]

Consider the case where G′
m = βδ(R − Rm), corresponding to all of the external torque being

applied at a single radius R = Rm > R∗ (where R∗ is the innermost radius). Assume that the
viscous torque vanishes at R∗. Show that, in a steady state, the local rate of viscous dissipation
per unit surface area of the disc is given by
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3GMṀ

8πR3
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8πR7/2
Θ(R−Rm),

where Θ(x) is the Heaviside step function and Ṁ is the mass accretion rate onto the central object.
[10]

Sketch Dss(R). Comment on its behaviour around R = Rm and at R ≫ Rm. [5]
[

The viscous dissipation rate per unit surface area of the disc is D(R) =
1
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]
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3. Consider a Keplerian disc in which matter is injected at a constant rate Ṁ0 at radius R0

around a central object of mass M . Within R0 it spirals inwards under the action of the kinematic
viscosity ν, accreting at radius R∗ onto the central object. Outside R0 a steady distribution of mass
extends to very large radii and removes the angular momentum of the matter accreting within R0.
Explain why this implies that the mass-flow rate Ṁ as a function of radius R is 0 for R > R0 and
Ṁ0 for R < R0. Use this and appropriate boundary/matching conditions at R∗ and R0 to show
that in a steady state
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for R > R0, where Σ is the surface density. [15]

[Hints: express Ṁ in terms of the radial flow velocity u and use the expression for u in terms of
the kinematic viscosity; adapted from Frank, King & Raine, Accretion Power in Astrophysics.]

4. Consider an optically thin layer on top of an optically thick, geometrically thin Keplerian
accretion disc around a central object of mass M . In hydrostatic equilibrium, the energy balance
(per unit mass) as a function of R in this atmospheric layer is given by

3
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mec2
(E − 4kT )− ρΛ(T ) = 0,

where the first term is due to viscous heating (treated in the Shakura-Sunyaev model with viscosity
parameter α), the second term describes Comptonization effects, and the third term radiative
cooling (Λ is the so-called cooling function). In this equation, T and ρ are the temperature and
density in the atmospheric layer, F is the total radiative flux generated locally in the disc, E is
the flux-weighted mean energy of photons coming from the optically thick region, κ the opacity
for electron scattering, µ the mean molecular weight and me and mH the masses of the electron
and the hydrogen atom, respectively.

Find T (r) in the limit where ρ → 0 (when the last term in the energy equation can be ignored).
[4]

Using the expressions for a Shakura-Sunyaev disc (from the lectures) with an effective temper-
ature Teff(R) for which E ≃ 3.83 kTeff , show that there is no solution for T (r) unless

R3/2

f4
<

κµmHṀ
√
GM
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,

where f4 = 1− (R∗/R)1/2 and R∗ is the radius of the central star. [6]

Show that the expression R3/2/f4 (i.e. the left-hand side of the above equation) has a minimum
for R = 16R∗/9. Use this to determine the minimum mass-accretion rate Ṁcrit below which there
is no hydrostatic solution, expressing your solution in terms of the critical Eddington accretion
rate Ṁedd. [6]

Estimate the ratio of Ṁcrit/ṀEdd for a cataclysmic variable, containing a white dwarf of 1M⊙

and radius of 6000 km. Speculate what happens when Ṁ falls below Ṁcrit. [4]

[The problem is based on the analysis in M. Czerny & A. R. King (1989, MNRAS, 236, 843).]
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Section B: Essay Questions

Write a short essay (of the order of 1000 words) on one of the two topics below.

Essay A: Self-Gravitating Discs

Write an essay on the physics of self-gravitating discs and important applications of these.
Specifically, (a) sketch the derivation of the Toomre criterion and explain the role of thermal
pressure and rotation in stabilizing a disc, discuss (b) the different situations under which a disc
can become Toomre unstable and discuss (c) two potential applications (e.g. the formation of
planets/brown dwarfs and gamma-ray bursts). [30]

Essay B: The Magnetorotational Instability

Write an essay on the magnetorotational instability (Balbus-Hawley instability). Specifically,
discuss (a) the physical motivation (the viscosity problem), (b) how the instability works, including
some simple estimates of its strength (growth rate), (c) applications to accretion discs, and (d)
possible limitations of the theory. [30]
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