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Page 1 of 5



Figure 1: A diagram showing the axisymmetric toroidal coordinates (r, θ, ζ). Only a part of the
torus is shown.

1. In this question you will use kinetic MHD to investigate force balance in an axisymmetric
toroidal magnetic field B. To describe the toroidal magnetic geometry, we use the toroidal co-
ordinates (r, θ, ζ) shown in figure 1. The coordinates (r, θ, ζ) form a right-handed orthonormal
coordinate system, and are defined by their relationship to the Cartesian coordinates (x, y, z): x

y
z

 =

 R(r, θ) cos ζ
−R(r, θ) sin ζ

Z(r, θ)

 , (1)

where Z(r, θ) = r sin θ, and R(r, θ) = R0 + r cos θ, with R0 the major radius of the torus. The
minor radial coordinate r varies between the limits 0 < r 6 a. The unit direction vectors of
the (r, θ, ζ) coordinates are

r̂ =

 cos θ cos ζ
− cos θ sin ζ

sin θ

 , θ̂ =

 − sin θ cos ζ
sin θ sin ζ

cos θ

 , and ζ̂ =

 − sin ζ
− cos ζ

0

 . (2)

Consider a simple quasineutral plasma consisting of electrons with mass me and charge −e,
and ions with mass mi and charge Zie. Assume that the system is in steady state, with
electric field E = 0; assume that the distribution function of ions 〈fi〉ϕ and electrons 〈fe〉ϕ
are isotropic in velocity space about their respective mean velocities, ui and ue. Assume that
there is negligible mass flow, i.e., ui = 0.

(a) [5 marks] Use the parallel and perpendicular momentum equations of kinetic MHD to
show that the total isotropic pressure P , and the current J satisfy

B · ∇P = 0, (3)

and
J⊥ · ∇P = 0. (4)

Here, the total isotropic pressure is defined by P =
∑

s(ps‖ + 2ps⊥)/3, with s = (i, e) an
index that runs over species, and ps‖ and ps⊥ the parallel and perpendicular pressures of
the species s, respectively. The perpendicular current J⊥ = J − J‖, with J‖ = (J · b)b,
and b the unit vector in the direction of B. [Hint: Order |J‖| ∼ |J⊥| ∼ P/aB, with
B = |B|, and 2µ0P/B

2 ∼ 1, and determine the allowed size of the electron mean velocity
ue.]
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(b) [10 marks] Axisymmetry implies that the pressure and the components of the magnetic
field are independent of ζ, i.e., P = P (r, θ) and B = Br(r, θ)r̂ + Bθ(r, θ)θ̂ + Bζ(r, θ)ζ̂,
respectively. Show that an axisymmetric magnetic field may be written in the form

B =
I(ψ)

R
ζ̂ +

1

R
ζ̂ ×∇ψ, (5)

where R = R(r, θ) and ψ = ψ(r, θ). To do this, first use ∇ ·B = 0 to relate Br and Bθ to
a function ψ(r, θ). Second, use equation (3) to show that P = P (ψ). Third, use equation
(4), and Ampère’s law to derive a relation for Bζ . Finally, compute the integral

1

2π

∫ 2π

0

∫ r

0
Bθ(s, θ) R(s, θ)dsdζ,

and hence give a physical interpretation for ψ.

Hint: You may use without proof the forms of grad, div, and curl in the toroidal (r, θ, ζ)
coordinates. For a scalar φ and vector U = Urr̂ + Uθθ̂ + Uζ ζ̂, these are

∇φ = r̂
∂φ

∂r
+

θ̂

r

∂φ

∂θ
+

ζ̂

R

∂φ

∂ζ
,

∇ ·U =
1

rR

∂

∂r
(rRUr) +

1

rR

∂

∂θ
(RUθ) +

1

R

∂Uζ
∂ζ

,

and

∇×U =
r̂

rR

(
∂(RUζ)

∂θ
− ∂(rUθ)

∂ζ

)
+

θ̂

R

(
∂Ur
∂ζ
−
∂(RUζ)

∂r

)
+

ζ̂

r

(
∂(rUθ)

∂r
− ∂Ur

∂θ

)
.

(c) [15 marks] Consider the kinetic MHD perpendicular momentum equation. In the limit of

Bθ
Bζ
∼ ε =

a

R0
� 1 ∼ 2µ0p

B2
θ

, with
dI2

dr
∼ µ0R2

0

p

a
,

and ψ = ψ0(r) + ψ1(r, θ) +O(ε2), show that leading-order force balance becomes

µ0R
2
0

dP (ψ0)

dr
+ I(ψ0)

dI(ψ0)

dr
+

1

r

dψ0

dr

d

dr

(
r
dψ0

dr

)
= 0. (6)

Briefly interpret this result.

(d) [5 marks] Find ψ0 by solving equation (6) for I a constant, dP/dψ0 = −2I/qµ0R
3
0, where

q is a constant, and subject to no divergences at r = 0. Give B to O(ε).
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2. In this question you will consider particle motion in axisymmetric toroidal magnetic geometry,
shown in figure 1. The (r, θ, ζ) toroidal coordinates are defined in equation (1), and the unit
vectors r̂, θ̂, and ζ̂ are defined in equation (2). Assume that the plasma is in steady state, the
electric field E = 0, and take the magnetic field to be

B =
I

R0

(
1− r

R0
cos θ

)
ζ̂ +

ζ̂

R0
×∇Ψ, (7)

where I is a constant (with units current/µ0), R0 is the major radius, r ∼ a, with a the minor
radius, and

Ψ(r) =
B0R0r

4

4a3
,

with B0 ∼ aI/R2
0 a constant magnetic field. Assume throughout that ε = a/R0 � 1.

(a) [3 marks] Consider particle motion in a magnetic field of the form (7). Use the guiding
centre equations to show that Ψ is conserved by particle motion on time scales of O(a/vth),
where vth is the thermal speed.

(b) [2 marks] Show that the kinetic energy of particles is conserved.

(c) [10 marks] Keeping terms to O(ε), sketch the magnetic field strength B(θ) = |B| (at fixed
r 6= 0). Hence, describe the trajectories of particles on time scales of O(a/vth).

(d) [15 marks] Write down the drift kinetic equation valid for O(a/vth) time scales. A trace
impurity ion species is introduced into the device, and heated by cyclotron waves. The
resulting distribution of the impurity species at θ = 0 is

〈f〉ϕ = N
( m

2πT

)3/2(mµB(r, θ = 0)

T

)2

exp

(
−
mv2‖/2 +mµB(r, θ = 0)

T

)
,

where N and T are constant densities and temperatures, respectively, m is the particle
mass, v‖ is the parallel velocity and µ is the magnetic moment. Calculate the density of
impurity ions at all (r, θ), correct to O(ε).
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3. In this question you will consider the propagation of cold plasma waves in a sheared-slab
magnetic geometry. Assume that the magnetic field has the form

B =
B0

(1 + (x/L)2)1/2

(
ẑ +

x

L
ŷ
)
,

where (x, y, z) are the usual Cartesian coordinates, with corresponding unit vectors x̂, ŷ, and
ẑ, B0 is a constant magnetic field, and L is a constant length. The plasma consists of ions, with
mass mi and charge Zie, and electrons, with mass me and charge −e. Assume throughout that
Zi ∼ 1� mi/me. The electron density ne is constant throughout the plasma, and the plasma

equilibrium is quasineutral. An extraordinary mode (X mode) with frequency ω >
√
ω2
pe + Ω2

e

and wave vector k = kx0x̂+ ky0ŷ is launched from x = 0. Here, the plasma frequency ωpe and
the cyclotron frequency Ωe satisfy

ωpe =

√
e2ne
ε0me

& Ωe =
eB0

me
.

(a) [5 marks] By considering the ray-tracing equation, show that ky = k · ŷ and kz = k · ẑ
are constants along the path of the wave.

(b) [3 marks] Determine k‖ = k ·b and k⊥ = k− k‖b, with b the unit vector in the direction
of the magnetic field. Hence, write down the basis vectors k⊥/|k⊥| and b× k⊥/|k⊥|.

(c) [12 marks] Show that the cold plasma dispersion relation for general x can be written in
the form (

ckx
ω

)4

G(x, ky, ω) +

(
ckx
ω

)2

H(x, ky, ω) +K(x, ky, ω) = 0. (8)

Determine G, H, and K. For the propagating X mode, use equation (8), and the initial
condition at x = 0, to find the function F (x, ky, ω) such that(

ckx
ω

)2

= F (x, ky, ω).

(d) [3 marks] Write down the condition for the wave to resonate. Show that there is no x at
which the X mode resonates.

(e) [6 marks] Write down the condition for the X mode to reflect. Show that if the wave
reflects, it reflects at the position

xc
L

=

(
(n2y/ε‖ − 1)(ε⊥(ε⊥ − n2y)− g2)

(n2y − ε⊥)2 − g2

)1/2

,

where ny = cky0/ω, and ε‖, ε⊥ and g are components of the cold plasma dielectric tensor.
Use your result to show that the wave cannot reflect if ky0 = 0, or if Ωe � ω.

(f) [6 marks] Finally, assume that ω = 2ωpe, and ωpe =
√

2Ωe, and determine the range of
ky0 for which reflection occurs.
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