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1. This question explores the physics of magnetic mirror confinement systems. We consider the
confinement of particles within a cylindrical volume of radius a and length 2L.

(a) [5 marks] Consider a magnetic field of the form

B = Brr̂ +Bzẑ, (1)

with

Br = 2B0b
rz

L2

(
z2

L2
− 1

)
, Bz = B0

(
1 + 2b

z2

L2
− b z

4

L4

)
, (2)

for b > 0, −L < z < L, and 0 < r < a. Here we express B in terms of the usual cylindrical
coordinates (r, θ, z). Show that B may be written in the form

B =
∇ψ × θ̂

r
, (3)

where ψ(r, z) is a function to be determined. Sketch the form of Bz for −L < z < L and
sketch the contours of ψ(r, z) for −L < z < L, and 0 < r < a.

(b) [5 marks] Assume that there is an externally imposed electric field E = −∇φ, where
φ = φ(ψ). Take the size of the electric potential φ ∼ T/eρ∗, where T is the temperature
of the particles, e is the unit charge, and ρ∗ is the ratio of the thermal gyroradius to
the length scale a. Using the leading-order equations for the motion of particle guiding
centres; show that the externally imposed E drives an E × B velocity vE = rΩθ̂, with
Ω = dφ/dψ; and show that ψ is conserved along the paths followed by particle guiding
centres.

(c) [5 marks] Show that single particle motion conserves an additional quantity

U =
mv2‖

2
+mµB − m|vE |2

2
, (4)

where m is the particle mass, v‖ is the particle velocity in the direction parallel to the
magnetic field, µ is the magnetic moment, and B is the magnetic field strength.

(d) [5 marks] Find U(ψ, z, v‖, µ) for a magnetic mirror with a � L and aΩ ∼
√

2T/m.
Decompose U = mv2‖/2 + mΦ(ψ, z, µ), where Φ(ψ, z, µ) is an effective potential, and
hence describe the trajectories of particles within the magnetic mirror, for a given µ 6= 0.
What are the minimum and maximum values of U for particles that are confined to
remain in the region −L < z < L? Sketch Φ(ψ, z, µ) for fixed ψ and µ 6= 0. [Hint: Use
the expansion in a/L� 1 to obtain an approximate expression for B which is a function
of z only.]

(e) [5 marks] Using your results from part (d), consider the confinement of particles with
µ = 0. Show that when Ω = 0 particles with µ = 0 and v‖ 6= 0 are not confined
to the region −L < z < L. Find the function v‖,max(µ, ψ) such that particles with
v‖(z = 0) < v‖,max(µ, ψ) are confined. Hence, show that imposing Ω 6= 0 confines particles
with µ = 0 and v‖(z = 0) < v‖,max(µ = 0, ψ). Comment on this result.

(f) [10 marks] Use the drift kinetic equation to find the distribution function 〈f〉ϕ for particles
in the magnetic mirror, assuming that unconfined particles are lost to the system. For
the confined piece of velocity space, take the boundary condition for the problem to be

〈f〉ϕ(v‖, µ, r, z = 0) = n0

(
m

2πT0

)3/2

exp

[
−
mv2‖

2T0
− mµB(r, z = 0)

T0

]
, (5)
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where n0 and T0 are constant densities and temperatures, respectively. Assume that
a/L� 1 and aΩ ∼

√
2T0/m. Show that the density of confined particles is given by

n(r, z) = n0

(
m

2πT0

)3/2

2π

∫ ∞
−∞

dv‖

∫ ∞
µmin(ψ,z,v‖)

dµB(r, z) exp

[
−
mv2‖

2T0
− mµB(r, z)

T0

]
N(r, z),

(6)
with

N(r, z) = exp

[
mr2Ω2(1− f(z))

T0

]
, (7)

and where µmin(ψ, z, v‖) and f(z) are functions to be determined. Evaluate the integral

for n(r, z) in the limits aΩ�
√

2T0/m and aΩ�
√

2T0/m, and comment on the results.
[Hint: To obtain µmin, use your expression from part (d) for the maximum value of U for
particles that are confined to the region −L < z < L.]
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Figure 1: A diagram showing z-pinch geometry, and cylindrical coordinates.

2. Consider a low-β, electrostatic plasma confined in a z-pinch geometry, illustrated in figure 1
with the standard cylindrical coordinates (r, θ, z). Assume that the plasma contains only 2
species, ions with charge Ze and mass mi, and electrons with charge −e and mass me. Take
the magnetic field to be B = B(r)θ̂. Assume that the plasma has reached a time-independent
equilibrium, with an equilibrium distribution function for the species s of the form

fM (r, v‖, µ) =
ns(r)

π3/2

(
ms

2T‖,s(r)

)1/2 ms

2T⊥,s(r)
exp

[
−

msv
2
‖

2T‖,s(r)
− msµB(r)

T⊥,s(r)

]
, (8)

where v‖ is the particle velocity in the direction parallel to the magnetic field, µ is the magnetic
moment. Take the equilibrium electric field to vanish, i.e., E = 0.

(a) [2 marks] Write down the condition which B satisfies if B is sourced entirely by external
magnets. Deduce the form of B(r).

(b) [8 marks] Consider the stability of equilibrium distribution function in this geometry.
Consider perturbations to the equilibrium distribution function δ〈f〉ϕ and electric poten-
tial δφ of the forms

δ〈f〉ϕ(t, r, θ, z, v‖, µ) = g̃(r, v‖, µ) exp [iMθ + ikz − iωt], (9)

and
δφ(t, r, θ, z) = φ̃(r) exp [iMθ + ikz − iωt], (10)

respectively. Find the linearised, low-flow drift kinetic equation for these fluctuations in
terms of g̃ and φ̃. Write down the linearised form of the quasineutrality equation.

(c) [5 marks] For M 6= 0 fluctuations consider the ordering

kT

ωreB
∼
√

T

mi

M

r
� ω

ω′∗,e
∼ ω

ω′∗,i
∼ η ∼ 1�

√
T

me

M

r
, (11)

where ω′∗,s = T‖,sk/ZeBLns , with Lns = −dr/d lnns, and where

T ∼ T⊥,s ∼ T‖,s, and η ∼ η‖,s = d lnT‖,s/d lnns ∼ η⊥,s = d lnT⊥,s/d lnns. (12)

Show that the ordering (11) yields waves which travel with the phase velocity

v∗,e = −
T‖,e

ene

b̂

B
×∇ne. (13)
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Use the dispersion relation which you obtain to give a physical picture for these waves.
[Hint: Find a fluid equation for δni. Plot the amplitude of the density fluctuation with z
at fixed θ, and consider how this fluctuation evolves with time.]

(d) [8 marks] For M 6= 0 fluctuations show that the ordering

kT

ωreB
∼ η−1 �

√
T

mi

M

r
∼ η−1/2 � ω

ω′∗,e
∼ ω

ω′∗,i
∼ 1� η �

√
mi

me
(14)

in the low-flow drift kinetic system of equations yields waves which satisfy the dispersion
relation

1−
ω′∗,e
ω

+

(
ω′∗,e
ω

)2 Ln(T⊥,iη⊥,i + T‖,iη‖,i)

ZT‖,er
−
ω′∗,e
ω

(
M

rω

)2 T‖,iη‖,i

mi
= 0. (15)

[Hint: first perform an expansion in
√
me/mi to find expressions for g̃e and g̃i. Then, per-

form the expansion in η to simplify the expression for g̃i needed to compute the dispersion
relation.]

(e) [2 marks] Solve the dispersion relation (15) in the subsidiary limit that T⊥,s = T‖,s = Ts
and

Tiηi
mi

(
M

rω′∗,e

)2

∼ LnηiTi
ZTer

∼ ε−2 � ω

ω′∗,e
∼ ε−1 � 1. (16)

Find the leading-order non-zero expressions for the real and imaginary parts of ω.

(f) [5 marks] Using your results from (d), construct a physical picture for the instability
found in (e). Again, assume the subsidiary ordering (16) and take T⊥,s = T‖,s = Ts. By
taking moments, or otherwise, obtain leading-order expressions for the fluctuating ion
temperature T̃i and density ñi. Convert these equations into moment equations of the
form

∂δTi
∂t

+ δv1 · ∇f1 = 0, (17)

and
∂δni
∂t

+ δv2 · ∇f2 = 0, (18)

and identify δv1, δv2, f1 and f2. Using these moment equations describe the physical
picture for the growth of the instability. [Hint: Plot the amplitude of a temperature
fluctuation with z at fixed θ, and consider how this fluctuation evolves with time.]
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3. Consider an inhomogeneous plasma consisting of electrons, with mass me and charge −e, and
ions, with mass mi and charge Ze, in a cartesian slab geometry described by the cartesian
coordinates (x, y, z). The plasma is magnetised by an externally imposed magnetic field B =
B(x)ẑ. Assume that dB/dx > 0 everywhere. The equilibrium plasma density is a function
of x only, i.e., ne = ne(x), and dne/dx > 0 within the plasma. An antenna is positioned at
x = x0, and is able to launch waves towards x > x0. Assume throughout that Zme/mi � 1.

(a) [3 marks] Write down the cold plasma dispersion relation for waves that propagate in a
homogeneous plasma and homogeneous background magnetic field with a wave vector k
that is perpendicular to the magnetic field direction b̂. Assume that the wave frequency
ω is of order the plasma frequency ωpe and of order the electron cyclotron frequency Ωe,
i.e., ω ∼ ωpe ∼ Ωe. Show that for waves with polarisation vectors e perpendicular to the

magnetic field direction, i.e., e · b̂ = 0, the wave number k = |k| satisfies

kc =

√
(ω2 − ω2

L)(ω2 − ω2
R)

(ω2 − ω2
UH)

, (19)

with ωR, ωUH , and ωL frequencies to be determined. Prove that ωR, ωUH , and ωL satisfy
the inequality ωR > ωUH > ωL when the plasma frequency ωpe =

√
e2ne/meε0 & Ωe =

eB/me. Show that the polarisation e satisfies

e = igk̂− ε⊥b̂× k̂, (20)

where k̂ = k/k, and g and ε⊥ should be determined. Modes with a dispersion relation
(19) and polarisation given by (20) are called X modes.

(b) [5 marks] Assume now that the antenna launches an X mode into the inhomogeneous
plasma with k = k0x̂, k0 > 0, at x = x0. Assume that the frequency of the wave ω
satisfies ω > ωR(x0), and assume that kL� 1, with L−1 ∼ d ln Ωe/dx ∼ d lnωpe/dx. Use
the ray tracing equation to show that the ray propagates in the x̂ direction. Hence, or
otherwise, determine k along the path of the ray. A reflected wave will be received by the
antenna. Determine the position xc where the wave reflects.

(c) [8 marks] Use the WKB ansatz for the wave to show that in the region x0 6 x < xc the
leading-order solution for the wave electric field δE is

δE = A(x)e exp

[
i

∫ x

x0

|kx(x′)|dx′ − iωt

]
+R(x)e exp

[
−i

∫ x

x0

|kx(x′)|dx′ − iωt

]
, (21)

where kx = k · x̂, and A(x) and R(x) are functions to be determined. You may assume
that the amplitude of the wave launched at x = x0, A(x0), is known. Give a physical
interpretation to the equations which determine A(x) and R(x). Explain why the solution
(21) contains one undetermined complex constant, and explain why this solution breaks
down at x = xc.

(d) [7 marks] Argue that to complete the leading-order solution (21) we need to solve the
general cold plasma equation for the wave electric field near x = xc. Argue that near
x = xc we should assume that

δE = E(x)e exp [−iωt], (22)

and show that E(x) is determined by

c2

ω2

d2E(x)

dx2
+
dF (x)

dx

∣∣∣
x=xc

(x− xc)E(x) = 0, (23)

with F (x) = ε⊥ − g2/ε⊥.

A15278S1 Page 6 of 7



(e) [8 marks] Solve equation (23) assuming non-diverging solutions, and match the solution
(22) to the solution (21) found in (c). Show that the ratio between the complex amplitudes
of the reflected and launched wave at x = x0 is

R(x0)

A(x0)
= exp [iΨ(xc)] = exp

[
2i

∫ xc

x0

|kx(x′)|dx′ − i
π

2

]
(24)

[Hint: Limits of special functions that are proved in the appendices of the printed lecture
notes may be used in your solution without proof, provided that the result is clearly stated
and referenced.]

(f) [4 marks] Describe the qualitative relationships between Ψ = Ψ(xc), xc, and ω. Assuming
that Ψ(xc) could be inverted to obtain xc(Ψ), what could be experimentally determined
by a measurement of Ψ? Briefly comment on why it is desirable to launch a wave with
ω > ωR(x0), as we assumed in part (b).
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