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Figure 1: (a) Dipolar magnetic field. (b) Cylindrical coordinates.

1. Consider the dipolar magnetic field shown in figure 1(a). The magnetic field of a dipole is

B(r, z) = Brr̂ +Bzẑ = −1

r

∂ψ

∂z
r̂ +

1

r

∂ψ

∂r
ẑ, (1)

where the flux function ψ(r, z) is

ψ(r, z) = − Ar2

(r2 + z2)3/2
. (2)

HereA is a positive constant, {r, θ, z} are the usual cylindrical coordinates, shown in figure 1(b),
and {r̂, θ̂, ẑ} are the usual unit vectors associated to the cylindrical coordinates, also shown in
figure 1(b).

Particles of charge Ze and mass m move in the dipolar magnetic field (1). There is an elec-
trostatic electric field E = −∇φ present. The corresponding electrostatic potential depends
only on the flux function ψ(r, z), that is, φ(r, z) = φ(ψ(r, z)). Assume that the characteristic
gyroradius ρ of the particles is small compared to the characteristic size of the system. Assume
as well that the force due to the electric field E is comparable in size to the magnetic force on
the particles. Using the lowest-order guiding centre equations, answer the following questions.

(a) [5 marks] Show that particles move on surfaces of constant ψ(r, z) and that their velocity
in the θ-direction is of the form vθ = rΩθ(ψ), where the rotation frequency Ωθ(ψ) = dφ/dψ
only depends on ψ.

(b) [10 marks] Show that the quantity

U =
1

2
mv2‖ +mµB − 1

2
mΩ2

θ(ψ)r2 (3)

is conserved. Here, v‖ is the velocity of the particle parallel to the magnetic field, and µ
is the magnetic moment of the particle.

(c) [8 marks] Sketch the magnitude of the magnetic field B as a function of r on a surface
ψ(r, z) = constant, and use this sketch to briefly describe the particle motion for (i) µ = 0,
and (ii) mµB � mΩ2

θr
2/2.

(d) [7 marks] Calculate the distribution function of the particles f(r, z, v‖, µ) everywhere
given the distribution function at z = 0, which is

f(r, z = 0, v‖, µ) = n0

(
m

2πT0

)3/2

exp

(
−
m(v2‖/2 + µB(r, z = 0))

T0

)
. (4)
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The density n0 and the temperature T0 at z = 0 do not depend on r. Using the distribution
function that you have obtained, calculate the density n =

∫
f d3v everywhere. Why does

the density have a gradient?

2. The lower-hybrid resonance is used in magnetic confinement devices to drive plasma current.
To model the propagation of the wave into the plasma, consider a plasma in a constant magnetic
field Bẑ composed of ions with charge Ze and mass mi and electrons with charge −e and
mass me. The ion and electron densities ns(x) depend on x, and they satisfy quasineutrality,
Zni(x) = ne(x). The value of the electron plasma frequency ωpe(x) ranges from zero at the
edge of the plasma to a maximum value ωpe,M that is comparable to the electron gyrofrequency
Ωe. The wavevector of the propagating wave is k = k⊥x̂ + k‖ẑ, and its frequency satisfies
ω ∼
√

ΩiΩe, where Ωi is the ion gyrofrequency.

(a) [5 marks] For densities such that ωpe ∼ Ωe, show that the elements ε⊥, g and ε‖ of the
cold plasma dielectric tensor can be approximated by

ε⊥ ' 1 +
ω2
pi

ΩeΩi
−
ω2
pi

ω2
, g ' −

ω2
pi

ωΩi
, ε‖ ' −

ω2
pe

ω2
, (5)

where ωpi is the ion plasma frequency.

(b) [3 marks] Using ray tracing, show that k‖ is constant.

(c) [7 marks] Show that k⊥ is given by

A

(
k⊥c

ω

)4

+B

(
k⊥c

ω

)2

+ C = 0. (6)

Give the coefficients A, B and C as functions of k‖ and of the components of the dielectric
tensor ε⊥, g and ε‖.

(d) [5 marks] At the lower-hybrid resonance, the perpendicular wavevector k⊥ diverges. Ar-
gue that the slow wave is the one that resonates. Determine the density ne,LH at which
the resonance happens as a function of ω, and hence show that ω <

√
ΩiΩe.

[Hint: show first that one of the coefficients A, B or C must vanish for k⊥ to diverge.]

(e) [8 marks] Show that the fast and slow waves have the same phase velocity at the densities

ne± =
ε0miω

2

Ze2

 k‖c√
ΩiΩe

±

√
1 +

k2‖c
2

ΩiΩe
−
k2‖c

2

ω2

2

. (7)

(f) [3 marks] Show that the densities ne− and ne+ exist only for k‖ < k‖,M , where k‖,M is a
function of frequency that you must determine.

(g) [2 marks] For k‖ < k‖,M , show that the wave cannot propagate into regions with electron
density such that ne− < ne < ne+.

(h) [5 marks] For k‖ < k‖,M , show that ne− < ne,LH and hence the wave cannot reach the
lower-hybrid resonance when launched from the edge of the plasma.

(i) [2 marks] Determine a minimum k‖ for which the wave can propagate from the edge to
the lower-hybrid resonance. Based on this value of k‖, argue that the wave cannot be
launched in vacuum.

(For interest: due to this result, lower-hybrid wave antennae must be located inside the
plasma, and they can suffer significant damage for this reason.)
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Figure 2: z-pinch and cylindrical coordinates.

3. The z-pinch is a magnetic confinement cylindrical configuration in which the magnetic field
closes in azimuthal loops (see Figure 2). The magnitude of the magnetic field depends only on
radius, that is, B = B(r)θ̂. Here we use the usual cylindrical coordinates {r, θ, z} and their
associated unit vectors {r̂, θ̂, ẑ}, shown in figure 2.

The plasma contained in the z-pinch is composed of electrons with charge −e and mass me,
and one ion species with charge Ze and mass mi. The distribution functions for both species
(s = i, e) are bi-Maxwellians that only depend on the radial position,

fBs(r, v‖, µ) = ns(r)

√
ms

2πTs‖(r)

ms

2πTs⊥(r)
exp

(
−

msv
2
‖

2Ts‖(r)
− msµB(r)

Ts⊥(r)

)
, (8)

where ns(r), Ts‖(r) and Ts⊥(r) are the density, parallel temperature and perpendicular tem-
perature of species s. The equilibrium electric field is zero, E = 0, and the densities of electrons
and ions satisfy quasineutrality, Zni(r) = ne(r). Assume that the ion perpendicular tempera-
ture is much smaller than the ion parallel temperature, and that the ion parallel temperature
is comparable to the electron parallel and perpendicular temperatures,

Ti⊥ � Ti‖ ∼ Te‖ ∼ Te⊥. (9)

For stability reasons, z-pinches are run at very low β, where β is the plasma energy divided
by the magnetic field energy. We proceed to study the stability of a low-β z-pinch to electric
field perturbations of the form δE = −∇δφ, with

δφ(r, θ, z) = φ̃(r) exp(iMθ + ikzz − iωt). (10)

We focus on perturbations that satisfy

M

r

√
Ti‖

mi
� ω ∼

kzTe‖

eB

∣∣∣∣ d

dr
lnne

∣∣∣∣ ∼ kzTe‖

eBr
� M

r

√
Te‖

me
. (11)

(a) [3 marks] Before considering the perturbations, show that, for low β, the equilibrium
magnetic field satisfies

d

dr
lnB ' −1

r
. (12)

(b) [5 marks] Show that the perturbed electron density is given by

ñe =
eφ̃

Te‖
ne. (13)
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(c) [12 marks] Show that the perturbed ion density is given by

ñi =
Zeφ̃

Ti‖
ni

{
r

2LTi‖
− 1 +

1

2ζ

[
r

2Ln
+

(
ζ2 − 1

2

)
r

2LTi‖
− ζ2 − 1

2

]

×
[
Z(ζ)−Z(−ζ) + 2i

√
π exp(−ζ2)

]}
, (14)

where ζ =
√
ω/ωdi, ωdi = 2kzTi‖/eBr is the frequency associated to the∇B and curvature

drifts, Ln = (−d lnni/dr)
−1 and LTi‖ = (−d lnTi‖/dr)

−1 are the density and perpendic-
ular temperature characteristic lengths, and Z(ζ) is the plasma dispersion function.

[Hint: to obtain this result, decompose (u2 − ζ2)−1 into simpler fractions, and be very
careful with the difference between the Landau contour of the integral over the resonant
denominator (u+ ζ)−1 and the Landau contour used in the definition of Z(ζ).]

(d) [10 marks] For 1/LTi‖ sufficiently large, the plasma becomes unstable. To calculate the
stability boundary, solve the dispersion relation for a purely real ω. Argue that the mode
cannot become unstable when ω/ωdi < 0, and hence that ω/ωdi must be positive at the
stability boundary. In addition to finding the critical value for r/LTi‖ , show that

r

Ln
6 2 +

Ti‖

ZTe‖
(15)

for the plasma to become unstable.

A15278S1 Page 5 of 5 End of Last Page


