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Honour School of Mathematical and Theoretical Physics Part C
Master of Science in Mathematical and Theoretical Physics

COLLISIONLESS PLASMA PHYSICS

TAKE-HOME EXAM

HILARY TERM 2018

TUESDAY, 13TH MARCH 2018, 12noon to THURSDAY, 15 MARCH 2018,
12noon

You should submit answers to all questions. Answer booklets are provided for you to use but you
may type your answers if you wish. Typed answers should be printed single-sided and the pages

securely fastened together.

You may refer to books and other sources when completing the exam but should not discuss the
exam with anyone else.

Do not turn this page until you are told that you may do so
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Figure 1: (a) Dipolar magnetic field around a planet. (b) Spherical coordinates.

1. Consider the dipolar magnetic field around a spherical planet of radius R shown in figure 1(a).
The magnetic field of a dipole is

B(r, θ) = Brr̂ +Bθθ̂ = − 1

r2 sin θ

∂ψ

∂θ
r̂ +

1

r sin θ

∂ψ

∂r
θ̂, (1)

where the flux function ψ(r, θ) is

ψ(r, θ) =
A sin2 θ

r
. (2)

Here {r, θ, φ} are the usual spherical coordinates, shown in figure 1(b), and {r̂, θ̂, φ̂} are the
usual unit vectors associated to the spherical coordinates, also shown in figure 1(b).

Particles of charge Ze and mass m move in the dipolar magnetic field (1). The electric field
E is negligibly small. Assume that the particles are magnetized, that is, their characteristic
gyroradius ρ is small compared to the characteristic size of the system, ρ/R � 1. Using the
lowest order guiding centre equations, answer the following questions.

(a) [5 marks] Particles move along the magnetic field line on which they started. Show that
this is equivalent to moving along lines of constant ψ(r, θ) and constant φ. Show that the
kinetic energy K = mv2/2 of each particle is conserved.

(b) [10 marks] To determine the position of each particle, we use the coordinates {ψ, θ, φ}.
Plot B as a function of θ for fixed ψ and φ, and using this plot, describe the motion of a
particle with kinetic energy K and magnetic moment µ. Give a formula for the points θb
in which the parallel velocity vanishes.

(c) [5 marks] Show that particles with ψ ∼ |A|/L and L� R collide with the planet when

mµ

K
6

R3

2|A|
. (3)
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(d) [10 marks] Assume that any particle that collides with the planet is lost, and hence there
are no particles that satisfy condition (3). Using the lowest order drift kinetic equa-
tion, calculate the distribution function of the particles f(r, θ,v) everywhere given the
distribution function at θ = π/2, which is

f(r, θ = π/2,v) = N
( m

2πT

)3/2
exp

(
−mv

2

2T

)
. (4)

for mµ/K > R3/2|A| and L < r < 2L, and

f(r, θ = π/2,v) = 0 (5)

otherwise. Here the density N , the temperature T and the length L are constants. Us-
ing the distribution function that you have obtained, calculate the density n =

∫
f d3v

everywhere, and in particular near r = R.

2. By answering the following questions, you are going to determine the behavior of whistler waves
in the plasma confined by the Earth’s dipolar magnetic field. Consider a plasma composed of
one ion species with charge Ze and mass mi, and electrons with charge −e and mass me.

(a) [10 marks] Whistler waves are characterized by frequencies
√

ΩiΩe � ω � Ωe, where
Ωi = ZeB/mi and Ωe = eB/me are the ion and electron gyrofrequencies. Assume ωpe �
Ωe and

√
me/mi � 1, where ωpe =

√
e2ne/ε0me is the electron plasma frequency, ne is

the electron number density and ε0 is the vacuum permittivity. Show that for whistler
waves, the cold plasma dielectric tensor becomes

ε =

 ω2
pe/Ω

2
e −iω2

pe/Ωeω 0

iω2
pe/Ωeω ω2

pe/Ω
2
e 0

0 0 −ω2
pe/ω

2

 . (6)

When you neglect terms (for example, the ion contributions to the cold plasma dielectric
tensor), justify your decision with order of magnitude estimates.

(b) [8 marks] Assuming that kde � 1, where de = c/ωpe is the electron skin depth, show that
the whistler wave satisfies the dispersion relation

ω = k‖kd
2
eΩe. (7)

(c) [2 marks] Whistlers get their name from their dispersive nature: waves are generated in
the ionosphere and each frequency propagates towards observers in Earth at a different
velocity, leading to a signal with time-dependent frequency or “whistle”. Argue that the
group velocity of the whistlers approximately scales as

√
ω and hence observers on Earth

receive a signal with a frequency that decreases with time.

(d) [10 marks] Whistler propagates towards Earth along overdense plasma regions that are
aligned with the dipolar magnetic field. To study this propagation, consider a system
with a uniform magnetic field B = Bẑ and electron density ne(x) = ne0(1 − x2/L2),
where {x, y, z} are the usual Cartesian coordinates, and {x̂, ŷ, ẑ} are the unit vectors in
the directions of the Cartesian axes. The whistler wave is launched from the origin with
wavevector k = k⊥0x̂+ k‖0ẑ. Using ray tracing equations, show that k‖ is constant along
rays and find k as a function of x. Describe the propagation of the whistler wave.
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Figure 2: z-pinch and cylindrical coordinates.

3. The z-pinch is a magnetic confinement cylindrical configuration in which the magnetic field
closes in azimuthal loops (see Figure 2). The magnitude of the magnetic field depends on
radius, that is, B = B(r)θ̂. Here we use the usual cylindrical coordinates {r, θ, z} and their
associated unit vectors {r̂, θ̂, ẑ}, shown in figure 2.

The plasma contained in the z-pinch is composed of electrons with charge −e and mass me,
and one ion species with charge Ze and mass mi. The distribution functions for both species
(s = i, e) are Maxwellians that only depend on the radial position,

〈fs〉ϕ = fMs(r, v‖, µ) = ns(r)

(
ms

2πTs(r)

)3/2

exp

(
−
ms(v

2
‖/2 + µB(r))

Ts(r)

)
. (8)

The equilibrium electric field is zero, E = 0.

We consider the stability of this configuration to axisymmetric kinetic MHD modes, that is,
to infinitely small perturbations of the form

δ〈fs〉ϕ = g̃s(r, v‖, µ) exp(ikz − iωt),

δB = B̃(r) exp(ikz − iωt),

δvE = ṽE(r) exp(ikz − iωt),

δE‖ = Ẽ‖(r) exp(ikz − iωt).

(a) [3 marks] Before considering the perturbations, show that the equilibrium must satisfy
the equation

d

dr

(
P +

B2

2µ0

)
+
B2

µ0r
= 0, (9)

where P = niTi + neTe is the total plasma pressure.

(b) [7 marks] Using the perpendicular plasma displacement ξ̃⊥ = ξ̃rr̂+ξ̃zẑ = ṽE/(−iω), show
that the kinetic MHD induction equation gives

B̃ = −

[
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z −

(
2

r
+
µ0
B2

dP

dr

)
ξ̃r
r

]
Bθ̂. (10)

[Hint: use the result derived in part (a) to eliminate dB/dr from the equation.] Show
that the perturbation δB to the magnitude of the magnetic field is δBθ, and that the
perturbation δκ to the magnetic field line curvature κ = b̂ · ∇b̂ vanishes.
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(c) [10 marks] Using the kinetic MHD drift kinetic equation, obtain the distribution function
g̃s. Integrate it to obtain the perturbed parallel pressures,

p̃s‖ =

∫
msv

2
‖ g̃s d3v +

B̃θ
B
nsTs

= −
[
nsTs

(
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z

)
+

(
2nsTs
r

+
d(nsTs)

dr

)
ξ̃r

]
, (11)

and the perturbed perpendicular pressures,

p̃s⊥ =

∫
msµBg̃s d3v +

2B̃θ
B

nsTs

= −
[
2nsTs

(
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z

)
+

(
−nsTs

r
+

d(nsTs)

dr

)
ξ̃r

]
. (12)

(d) [5 marks] Show that the kinetic MHD momentum conservation equation gives

−ω2nimiξ̃r =
d

dr

[(
B2

µ0
+ 2P

)(
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z

)
−
(

2B2

µ0
+ P

)
ξ̃r
r

]

+
1

r

[(
2B2

µ0
+ P

)(
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z

)
−
(

4B2

µ0r
+

3P

r
+ 2

dP

dr

)
ξ̃r

]
,

(13)

−ω2nimiξ̃z = ik

[(
B2

µ0
+ 2P

)(
1

r

d

dr

(
rξ̃r

)
+ ikξ̃z

)
−
(

2B2

µ0
+ P

)
ξ̃r
r

]
. (14)

(e) [10 marks] To solve the equations in part (d), we use a variational principle. Show that
the eigenvalues ω2 are extrema of the functional

Λ[η̃r, η̃z] =
N [η̃r, η̃z]

D[η̃r, η̃z]
. (15)

where

N [η̃r, η̃z] =

∫ ∞

0

(
B2

µ0
+ 2P

) ∣∣∣∣1r d

dr
(rη̃r) + ikη̃z −

2B2 + µ0P

B2 + 2µ0P

η̃r
r

∣∣∣∣2 r dr

+

∫ ∞

0

(
7B2 + 5µ0P

B2 + 2µ0P

P

r
+ 2

dP

dr

)
|η̃r|2r dr, (16)

D[η̃r, η̃z] =

∫ ∞

0
nimi(|η̃r|2 + |η̃z|2)r dr. (17)

In other words, show that for the solutions η̃r = ξ̃r and η̃z = ξ̃z, Λ[ξ̃r, ξ̃z] = ω2 and that
Λ[ξ̃r + δη̃r, ξ̃z + δη̃z]− Λ[ξ̃r, ξ̃z] = 0 to first order in δη̃r � ξ̃r and δη̃z � ξ̃z.

(f) [5 marks] The smallest eigenvalue is the minimum of the functional Λ[η̃r, η̃z]. Hence, one
possible strategy to prove that the plasma is unstable, that is, that at least one eigenvalue
satisfies ω2 < 0, is to find functions η̃r and η̃z that make Λ[η̃r, η̃z] negative. Argue that
D[η̃r, η̃z] is always positive. Then minimize N [η̃r, η̃z] by choosing an appropriate function
η̃z. The final result should be that N [η̃r, η̃z] and hence Λ[η̃r, η̃z] become negative for
sufficiently large −dP/dr, and as a result, the plasma is unstable for sufficiently large
−dP/dr. Find the critical value of −dP/dr for which the plasma becomes unstable.
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