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You should submit answers to all questions.
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1. Radiofrequency (RF) waves are routinely used to inject momentum and energy into the elec-
trons of a plasma. Consider a steady-state, spatially-homogeneous plasma composed of one
ion species with charge Ze and mass m; and electrons with charge —e and mass m.. Let vy,
vy and v, be the usual Cartesian coordinates for velocity space, and %X, y and z be the unit
vectors parallel to the Cartesian axes. Let v, a and 5 be the spherical coordinates for velocity
space depicted in figure 1, and v, & and ,3 be the unit vectors parallel to V,v, V,a and V, .
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Figure 1: Spherical coordinates v, a and 8. The vectors v, & and ,6' are the unit vectors parallel
to Vv, Vya and V, 6.

A simple equation that describes the balance between collisions and injection of momentum
and energy due to RF waves is

Cee[fe»fe] + Cei[feafi] = _SRF7 (1)

where Cyy|[fs, fs] is the Fokker-Planck collision operator between species s and s’, and the
source Spr models the resonance between electrons and waves with phase velocity uz,

_Frrd
4rmev? dv

3FrF
drmeu’

Spr = — [0(v —u)] + 0(v — u) cos .
Here §(...) is the Dirac delta function and Fgrp is a constant. Assume that the energy and
momentum injection rates are sufficiently low that the ion and electron distribution functions

are close to stationary Maxwellians,

ms \ %2 mgv2
fs(v) = st(U) =MNs <27TT5> €xXp <_ 2T, ) )

where ng, Ty and mg are the density, temperature and mass of species s, respectively.

(a) [5 marks|] Show that the source Sgp does not affect particle balance and that the momen-
tum input per unit time and per unit volume due to Sgr is Frrz. Calculate the energy
injection per unit volume and per unit time.

(b) [5 marks] Using a moment of the kinetic equation (1) and expanding in /m./m; < 1,
calculate the steady-state temperature difference T, — T;.

(¢) [10 marks] In most applications, the phase velocity of the wave u is large compared to
the electron thermal speed v = +/2T./me, that is, u > wv,. At such large speeds,
the distribution function is small and the radiofrequency heating can have a large effect,
leading to a non-Maxwellian tail; that is, fe 22 fase for v ~ u > vge, but fe ~ fare for v ~
vte. Fortunately, we can still simplify the collision operator because the total contribution
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of the tail to integrals of the distribution function is smaller than the contribution due to
the thermal part of the distribution function. Neglecting the contribution from the non-
Maxwellian tail to the integrals in the collision operator but keeping its contribution to
the differential terms, one finds that Cec[fe, fe] = Ceelfe, fare] for velocities v ~ u > vye.
To simplify the electron-electron collision operator even further, assume that

afe N afe 3f -~ fMe

feNfMe7 Do 8,3 v Ve

~ fyme and

for v ~ u > wv. Using these assumptions, expand the collision operator in v /u ~
Ve /v < 1 to find

, 3/2
o= ()" (1228 (1)

87 Me mev v \ fue
+ 1t 2 sincxafe + La?fe
v3 |sina da Oa sin2a 082 | [’

where v,; = (4v27/3)[Ze*neIn Ael-/(47reo)2mé/2T63/2] is the electron-ion collision fre-
quency, In A.; is the Coulomb logarithm, and ¢y is the vacuum permittivity.
[Hint: you may use the expressions for Cyy|fs, fars] given in the notes/homework.]

(d) [10 marks] The solution to equation (1) can be decomposed into two spherical harmonics,
fe = Fe(v) + Ge(v) cos a.

Find the equation for F.(v) and discuss the boundary conditions that one must impose
on F,. Show that the solution for F,(v) is

(2)

Fe(v) = fae + KH(v — u) exp <—m(”2_“2)) :

2T,

where K is a constant and H(s) is the Heaviside step function, that is, H(s) = 0 for s < 0
and #H(s) = 1 for s > 0. Determine the constant K and calculate the effective electron
temperature 0, = n! ffe(mevg/?)) d3v. Compare ©, — T, with T, — T}, calculated in
part (b), and comment on the result.

[Hint: to calculate ©, you may want to use the integration variable w = v — u, and the
fact that in the integral w ~ T, /meu < u.]

(e) [15 marks] The piece G, satisfies
dG. G,

dv  u (3)

for v ~ u > v.. Show that, due to these orderings, the equation for G, simplifies to

4 3/2
3ﬁVez 2T, dG, B 1+ZG5 _ 3Frr 5(v—u).
4Zv? \ m, dv v

ATrmeu’

Solve for G, and calculate the electron flux ncu. = [ fev d3v. Compare the result with
the electron flux driven by an electric field force that is of the same size as the momentum
injected by the waves, —en.E = Frpz.
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2. In Braginskii’s model, the expressions for the parallel electron heat flux and the parallel friction
are

A11pe
Melei
Flij = Aoineb - VT, + Asonemevei (i) — ue)),

G| = — b VT, + Anzpe (uy) — ue),

where ne, T, and p. = n.1. are the electron density, temperature and pressure, respectively,
Ui — ug| is the difference between the ion and electron fluid parallel velocities, b =B /B
is the unit vector in the direction of the magnetic field B, m. is the electron mass, v.; =
(4271 /3)[Ze*ne In Ae; / (47r60)2mé/ 23 2] is the electron-ion collision frequency, e is the proton
charge, Ze is the ion charge, In A; is the Coulomb logarithm, and €q is the vacuum permittivity.
The coefficients Aq1, Aj2, Ao and Agy are order unity functions of the charge number of the
ions Z.

In the notes, we derived the coefficients A11, Aq2, Ao1 and Agsy for Z = 1. We found that Aqq
and Agg are positive, Ago is less than one, and Aj2 = Ag; (the equality A1 = Ao is known as
Onsager symmetry). In this problem, you will prove these properties of the coefficients Aj1,
Alg, Agl and Agg for all Z.

(a) [5 marks|] Show that the equation for the gyroraveraged first order perturbation to the
electron distribution function, (fe1),, can be written in the form

Fy(w)ymeveiwy (uy) — ue|)
Te

VeiC[<fel>go] = [FT(w)w”E) -Vin Te + fMe,

where C[(fe1),] is a linear integro-differential operator, and Frr(w) and Fjy(w) are functions
of the velocity magnitude. Give explicitly C[f], Fr(w) and Fj(w). Show as well that the
parallel electron heat flux and the friction can be written as

Qe| = Te/<fel>goFT(w)w|| d*w,

Fei|| = nemel/ei(uiﬂ - ue”) + Mele; /<fe1)¢,FJ(w)w| dgw.

(b) [5 marks] Show that, for gyrophase-independent functions f and g that satisfy [ f d3w =

0= fgd3w, fwa dBw =0 = fgw” d3w and ffw2 dBw =0 = fng d3w, the linear
operator C[f] satisfies the properties

/‘fQﬁ&w<0
fMe

and

9 3,, f 3
/fMeC[f]d w_/fMeC[g]d v

(¢) [10 marks] Using parts (a) and (b), prove that A3 > 0, Age < 1 and Ajg = Ag.

[Hint: you may want to use the functions Gr(w) and G j(w) defined such that C[Gow) fare] =
Faw”fMe with a =T, J]

(d) [10 marks] Set b - VT, = 0 and rewrite the equation for (fe1), as

Fei w
Ce(ﬁ) [ge] + /:'ei[ge] - MfM& (4>

€

where C’éﬁ) is the linearized electron-electron collision operator, L.; is the Lorentz operator
for electron-ion collisions, ge = (fe1)y + Kw) fapre and K is a constant. Determine the
constant K. Use fgewH d3w and equation (4) to show that Ay > 0.
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3. Consider a plasma composed of one ion species with charge e and mass m; and electrons
with charge —e and mass m.. This plasma sits on a constant magnetic field pointing in
the z-direction, B = Bz. The magnetic field is sufficiently large and collisions are sufficiently
frequent that the use of Braginskii’s equations is justified. The density n. and the temperatures
T; and T, are spatially uniform, and the plasma current density J is zero. The ion velocity
u;(t,z) = ui»(t,z)z is a function of = and time, and it points in the z-direction.

(a) [10 marks] Show that the total-momentum equation can be written as

Ouiy  6miTivy; 0%u;,

ot  5e2B2?2 9x2

where v;; = (44/7/3)[e*neIn Ay / (471'60)2771; / 21}3/ 2] is the ion-ion collision frequency, In A;;
is the Coulomb logarithm, and ¢g is the vacuum permittivity.

(b) [10 marks] Solve the equation for u;,(¢,z) for the initial condition

—ug for z <0,
U for x > 0.

wis(t = 0,2) _{

and the boundary conditions w;,(t,z — —00) = —ug and wu;,(t,z — 00) = ug. Sketch the
time evolution of u;,.

[Hint: you may want to use the self-similar form u;, (¢, z) = U(§) with £ = z/v/1.]

(c) [5 marks] What difference, if any, does it make if the ion velocity is pointing in the y
direction; i.e. u;(t,x) = uyy(t, 2)y?
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