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1. Radiofrequency (RF) waves are routinely used to inject momentum and energy into the elec-
trons of a plasma. Consider a steady-state, spatially-homogeneous plasma composed of one
ion species with charge Ze and mass mi and electrons with charge −e and mass me. Let vx,
vy and vz be the usual Cartesian coordinates for velocity space, and x̂, ŷ and ẑ be the unit
vectors parallel to the Cartesian axes. Let v, α and β be the spherical coordinates for velocity
space depicted in figure 1, and v̂, α̂ and β̂ be the unit vectors parallel to ∇vv, ∇vα and ∇vβ.
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Figure 1: Spherical coordinates v, α and β. The vectors v̂, α̂ and β̂ are the unit vectors parallel
to ∇vv, ∇vα and ∇vβ.

A simple equation that describes the balance between collisions and injection of momentum
and energy due to RF waves is

Cee[fe, fe] + Cei[fe, fi] = −SRF , (1)

where Css′ [fs, fs′ ] is the Fokker-Planck collision operator between species s and s′, and the
source SRF models the resonance between electrons and waves with phase velocity uẑ,

SRF = − FRF
4πmev2

d

dv
[δ(v − u)] +

3FRF
4πmeu3

δ(v − u) cosα.

Here δ(. . .) is the Dirac delta function and FRF is a constant. Assume that the energy and
momentum injection rates are sufficiently low that the ion and electron distribution functions
are close to stationary Maxwellians,

fs(v) ' fMs(v) = ns

(
ms

2πTs

)3/2

exp

(
−msv

2

2Ts

)
,

where ns, Ts and ms are the density, temperature and mass of species s, respectively.

(a) [5 marks] Show that the source SRF does not affect particle balance and that the momen-
tum input per unit time and per unit volume due to SRF is FRF ẑ. Calculate the energy
injection per unit volume and per unit time.

(b) [5 marks] Using a moment of the kinetic equation (1) and expanding in
√
me/mi � 1,

calculate the steady-state temperature difference Te − Ti.
(c) [10 marks] In most applications, the phase velocity of the wave u is large compared to

the electron thermal speed vte =
√

2Te/me, that is, u � vte. At such large speeds,
the distribution function is small and the radiofrequency heating can have a large effect,
leading to a non-Maxwellian tail; that is, fe 6' fMe for v ∼ u� vte, but fe ' fMe for v ∼
vte. Fortunately, we can still simplify the collision operator because the total contribution
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of the tail to integrals of the distribution function is smaller than the contribution due to
the thermal part of the distribution function. Neglecting the contribution from the non-
Maxwellian tail to the integrals in the collision operator but keeping its contribution to
the differential terms, one finds that Cee[fe, fe] ' Cee[fe, fMe] for velocities v ∼ u � vte.
To simplify the electron-electron collision operator even further, assume that

fe ∼ fMe,
∂fe
∂α
∼ ∂fe

∂β
∼ fMe and

∂fe
∂v
∼ fMe

vte

for v ∼ u � vte. Using these assumptions, expand the collision operator in vte/u ∼
vte/v � 1 to find

Cee[fe, fe] '
3
√
πνei

8Z

(
2Te
me

)3/2
{

1

v2
∂

∂v

[
2TefMe

mev

∂

∂v

(
fe
fMe

)]

+
1

v3

[
1

sinα

∂

∂α

(
sinα

∂fe
∂α

)
+

1

sin2 α

∂2fe
∂β2

]}
,

where νei = (4
√

2π/3)[Ze4ne ln Λei/(4πε0)
2m

1/2
e T

3/2
e ] is the electron-ion collision fre-

quency, ln Λei is the Coulomb logarithm, and ε0 is the vacuum permittivity.

[Hint: you may use the expressions for Css′ [fs, fMs′ ] given in the notes/homework.]

(d) [10 marks] The solution to equation (1) can be decomposed into two spherical harmonics,

fe = Fe(v) +Ge(v) cosα.

Find the equation for Fe(v) and discuss the boundary conditions that one must impose
on Fe. Show that the solution for Fe(v) is

Fe(v) = fMe +KH(v − u) exp

(
−me(v

2 − u2)
2Te

)
. (2)

where K is a constant and H(s) is the Heaviside step function, that is, H(s) = 0 for s < 0
and H(s) = 1 for s > 0. Determine the constant K and calculate the effective electron
temperature Θe = n−1e

∫
fe(mev

2/3) d3v. Compare Θe − Te with Te − Ti, calculated in
part (b), and comment on the result.

[Hint: to calculate Θe, you may want to use the integration variable w = v − u, and the
fact that in the integral w ∼ Te/meu� u.]

(e) [15 marks] The piece Ge satisfies
dGe
dv
∼ Ge

u
(3)

for v ∼ u� vte. Show that, due to these orderings, the equation for Ge simplifies to

3
√
πνei

4Zv2

(
2Te
me

)3/2(dGe
dv
− 1 + Z

v
Ge

)
= − 3FRF

4πmeu3
δ(v − u).

Solve for Ge and calculate the electron flux neue =
∫
fev d3v. Compare the result with

the electron flux driven by an electric field force that is of the same size as the momentum
injected by the waves, −eneE = FRF ẑ.
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2. In Braginskii’s model, the expressions for the parallel electron heat flux and the parallel friction
are

qe‖ = −A11pe
meνei

b̂ · ∇Te +A12pe(ui‖ − ue‖),

Fei‖ = A21neb̂ · ∇Te +A22nemeνei(ui‖ − ue‖),

where ne, Te and pe = neTe are the electron density, temperature and pressure, respectively,
ui‖ − ue‖ is the difference between the ion and electron fluid parallel velocities, b̂ = B/B
is the unit vector in the direction of the magnetic field B, me is the electron mass, νei =

(4
√

2π/3)[Ze4ne ln Λei/(4πε0)
2m

1/2
e T

3/2
e ] is the electron-ion collision frequency, e is the proton

charge, Ze is the ion charge, ln Λei is the Coulomb logarithm, and ε0 is the vacuum permittivity.
The coefficients A11, A12, A21 and A22 are order unity functions of the charge number of the
ions Z.

In the notes, we derived the coefficients A11, A12, A21 and A22 for Z = 1. We found that A11

and A22 are positive, A22 is less than one, and A12 = A21 (the equality A12 = A21 is known as
Onsager symmetry). In this problem, you will prove these properties of the coefficients A11,
A12, A21 and A22 for all Z.

(a) [5 marks] Show that the equation for the gyroraveraged first order perturbation to the
electron distribution function, 〈fe1〉ϕ, can be written in the form

νeiC[〈fe1〉ϕ] =

[
FT (w)w‖b̂ · ∇ lnTe +

FJ(w)meνeiw‖(ui‖ − ue‖)
Te

]
fMe,

where C[〈fe1〉ϕ] is a linear integro-differential operator, and FT (w) and FJ(w) are functions
of the velocity magnitude. Give explicitly C[f ], FT (w) and FJ(w). Show as well that the
parallel electron heat flux and the friction can be written as

qe‖ = Te

∫
〈fe1〉ϕFT (w)w‖ d3w,

Fei‖ = nemeνei(ui‖ − ue‖) +meνei

∫
〈fe1〉ϕFJ(w)w‖ d3w.

(b) [5 marks] Show that, for gyrophase-independent functions f and g that satisfy
∫
f d3w =

0 =
∫
g d3w,

∫
fw‖ d3w = 0 =

∫
gw‖ d3w and

∫
fw2 d3w = 0 =

∫
gw2 d3w, the linear

operator C[f ] satisfies the properties∫
f

fMe
C[f ] d3w < 0.

and ∫
g

fMe
C[f ] d3w =

∫
f

fMe
C[g] d3w.

(c) [10 marks] Using parts (a) and (b), prove that A11 > 0, A22 < 1 and A12 = A21.

[Hint: you may want to use the functionsGT (w) andGJ(w) defined such that C[Gαw‖fMe] =
Fαw‖fMe with α = T, J .]

(d) [10 marks] Set b̂ · ∇Te = 0 and rewrite the equation for 〈fe1〉ϕ as

C(`)
ee [ge] + Lei[ge] =

Fei‖w‖

pe
fMe, (4)

where C
(`)
ee is the linearized electron-electron collision operator, Lei is the Lorentz operator

for electron-ion collisions, ge = 〈fe1〉ϕ + Kw‖fMe and K is a constant. Determine the
constant K. Use

∫
gew‖ d3w and equation (4) to show that A22 > 0.
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3. Consider a plasma composed of one ion species with charge e and mass mi and electrons
with charge −e and mass me. This plasma sits on a constant magnetic field pointing in
the z-direction, B = Bẑ. The magnetic field is sufficiently large and collisions are sufficiently
frequent that the use of Braginskii’s equations is justified. The density ne and the temperatures
Ti and Te are spatially uniform, and the plasma current density J is zero. The ion velocity
ui(t, x) = uiz(t, x)ẑ is a function of x and time, and it points in the z-direction.

(a) [10 marks] Show that the total-momentum equation can be written as

∂uiz
∂t

=
6miTiνii
5e2B2

∂2uiz
∂x2

,

where νii = (4
√
π/3)[e4ne ln Λii/(4πε0)

2m
1/2
i T

3/2
i ] is the ion-ion collision frequency, ln Λii

is the Coulomb logarithm, and ε0 is the vacuum permittivity.

(b) [10 marks] Solve the equation for uiz(t, x) for the initial condition

uiz(t = 0, x) =

{
−u0 for x < 0,
u0 for x > 0.

and the boundary conditions uiz(t, x→ −∞) = −u0 and uiz(t, x→∞) = u0. Sketch the
time evolution of uiz.

[Hint: you may want to use the self-similar form uiz(t, x) = U(ξ) with ξ = x/
√
t.]

(c) [5 marks] What difference, if any, does it make if the ion velocity is pointing in the y
direction; i.e. ui(t, x) = uiy(t, x)ŷ?
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