COLLISIONAL PLASMA PHYSICS
 Trinity Term 2019

TUESDAY, 25th JUNE 2019, 12noon to THURSDAY 27th JUNE 2019, 12noon

You should submit answers to all questions.
Answer booklets are provided for you to use but you may type your answers if you wish. Typed answers should be printed single-sided and the pages securely fastened together.

You may refer to books and other sources when completing the exam but should not discuss the exam with anyone else.

The numbers in the margin indicate the weight that the Examiners anticipate assigning to each part of the question.

Do not turn this page until you are told that you may do so

1. Radiofrequency (RF) waves are routinely used to inject momentum and energy into the electrons of a plasma. Consider a steady-state, spatially-homogeneous plasma composed of one ion species with charge $Z e$ and mass m_{i} and electrons with charge $-e$ and mass m_{e}. Let v_{x}, v_{y} and v_{z} be the usual Cartesian coordinates for velocity space, and $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ be the unit vectors parallel to the Cartesian axes. Let v, α and β be the spherical coordinates for velocity space depicted in figure 1, and $\hat{\mathbf{v}}, \hat{\boldsymbol{\alpha}}$ and $\hat{\boldsymbol{\beta}}$ be the unit vectors parallel to $\nabla_{v} v, \nabla_{v} \alpha$ and $\nabla_{v} \beta$.

Figure 1: Spherical coordinates v, α and β. The vectors $\hat{\mathbf{v}}, \hat{\boldsymbol{\alpha}}$ and $\hat{\boldsymbol{\beta}}$ are the unit vectors parallel to $\nabla_{v} v, \nabla_{v} \alpha$ and $\nabla_{v} \beta$.

A simple equation that describes the balance between collisions and injection of momentum and energy due to RF waves is

$$
\begin{equation*}
C_{e e}\left[f_{e}, f_{e}\right]+C_{e i}\left[f_{e}, f_{i}\right]=-S_{R F}, \tag{1}
\end{equation*}
$$

where $C_{s s^{\prime}}\left[f_{s}, f_{\left.s^{\prime}\right]}\right]$ is the Fokker-Planck collision operator between species s and s^{\prime}, and the source $S_{R F}$ models the resonance between electrons and waves with phase velocity $u \hat{\mathbf{z}}$,

$$
S_{R F}=-\frac{F_{R F}}{4 \pi m_{e} v^{2}} \frac{\mathrm{~d}}{\mathrm{~d} v}[\delta(v-u)]+\frac{3 F_{R F}}{4 \pi m_{e} u^{3}} \delta(v-u) \cos \alpha .
$$

Here $\delta(\ldots)$ is the Dirac delta function and $F_{R F}$ is a constant. Assume that the energy and momentum injection rates are sufficiently low that the ion and electron distribution functions are close to stationary Maxwellians,

$$
f_{s}(\mathbf{v}) \simeq f_{M s}(v)=n_{s}\left(\frac{m_{s}}{2 \pi T_{s}}\right)^{3 / 2} \exp \left(-\frac{m_{s} v^{2}}{2 T_{s}}\right)
$$

where n_{s}, T_{s} and m_{s} are the density, temperature and mass of species s, respectively.
(a) [5 marks] Show that the source $S_{R F}$ does not affect particle balance and that the momentum input per unit time and per unit volume due to $S_{R F}$ is $F_{R F} \hat{\mathbf{z}}$. Calculate the energy injection per unit volume and per unit time.
(b) [5 marks] Using a moment of the kinetic equation (1) and expanding in $\sqrt{m_{e} / m_{i}} \ll 1$, calculate the steady-state temperature difference $T_{e}-T_{i}$.
(c) [10 marks] In most applications, the phase velocity of the wave u is large compared to the electron thermal speed $v_{t e}=\sqrt{2 T_{e} / m_{e}}$, that is, $u \gg v_{t e}$. At such large speeds, the distribution function is small and the radiofrequency heating can have a large effect, leading to a non-Maxwellian tail; that is, $f_{e} \nsucceq f_{M e}$ for $v \sim u \gg v_{t e}$, but $f_{e} \simeq f_{M e}$ for $v \sim$ $v_{t e}$. Fortunately, we can still simplify the collision operator because the total contribution
of the tail to integrals of the distribution function is smaller than the contribution due to the thermal part of the distribution function. Neglecting the contribution from the nonMaxwellian tail to the integrals in the collision operator but keeping its contribution to the differential terms, one finds that $C_{e e}\left[f_{e}, f_{e}\right] \simeq C_{e e}\left[f_{e}, f_{M e}\right]$ for velocities $v \sim u \gg v_{t e}$. To simplify the electron-electron collision operator even further, assume that

$$
f_{e} \sim f_{M e}, \quad \frac{\partial f_{e}}{\partial \alpha} \sim \frac{\partial f_{e}}{\partial \beta} \sim f_{M e} \quad \text { and } \quad \frac{\partial f_{e}}{\partial v} \sim \frac{f_{M e}}{v_{t e}}
$$

for $v \sim u \gg v_{t e}$. Using these assumptions, expand the collision operator in $v_{t e} / u \sim$ $v_{\text {te }} / v \ll 1$ to find

$$
\begin{aligned}
C_{e e}\left[f_{e}, f_{e}\right] & \simeq \frac{3 \sqrt{\pi} \nu_{e i}}{8 Z}\left(\frac{2 T_{e}}{m_{e}}\right)^{3 / 2}\left\{\frac{1}{v^{2}} \frac{\partial}{\partial v}\left[\frac{2 T_{e} f_{M e}}{m_{e} v} \frac{\partial}{\partial v}\left(\frac{f_{e}}{f_{M e}}\right)\right]\right. \\
& \left.+\frac{1}{v^{3}}\left[\frac{1}{\sin \alpha} \frac{\partial}{\partial \alpha}\left(\sin \alpha \frac{\partial f_{e}}{\partial \alpha}\right)+\frac{1}{\sin ^{2} \alpha} \frac{\partial^{2} f_{e}}{\partial \beta^{2}}\right]\right\},
\end{aligned}
$$

where $\nu_{e i}=(4 \sqrt{2 \pi} / 3)\left[Z e^{4} n_{e} \ln \Lambda_{e i} /\left(4 \pi \epsilon_{0}\right)^{2} m_{e}^{1 / 2} T_{e}^{3 / 2}\right]$ is the electron-ion collision frequency, $\ln \Lambda_{e i}$ is the Coulomb logarithm, and ϵ_{0} is the vacuum permittivity.
[Hint: you may use the expressions for $C_{s s^{\prime}}\left[f_{s}, f_{M s^{\prime}}\right]$ given in the notes/homework.]
(d) [10 marks] The solution to equation (1) can be decomposed into two spherical harmonics,

$$
f_{e}=F_{e}(v)+G_{e}(v) \cos \alpha .
$$

Find the equation for $F_{e}(v)$ and discuss the boundary conditions that one must impose on F_{e}. Show that the solution for $F_{e}(v)$ is

$$
\begin{equation*}
F_{e}(v)=f_{M e}+K \mathcal{H}(v-u) \exp \left(-\frac{m_{e}\left(v^{2}-u^{2}\right)}{2 T_{e}}\right) . \tag{2}
\end{equation*}
$$

where K is a constant and $\mathcal{H}(s)$ is the Heaviside step function, that is, $\mathcal{H}(s)=0$ for $s<0$ and $\mathcal{H}(s)=1$ for $s>0$. Determine the constant K and calculate the effective electron temperature $\Theta_{e}=n_{e}^{-1} \int f_{e}\left(m_{e} v^{2} / 3\right) \mathrm{d}^{3} v$. Compare $\Theta_{e}-T_{e}$ with $T_{e}-T_{i}$, calculated in part (b), and comment on the result.
[Hint: to calculate Θ_{e}, you may want to use the integration variable $w=v-u$, and the fact that in the integral $w \sim T_{e} / m_{e} u \ll u$.]
(e) [15 marks] The piece G_{e} satisfies

$$
\begin{equation*}
\frac{\mathrm{d} G_{e}}{\mathrm{~d} v} \sim \frac{G_{e}}{u} \tag{3}
\end{equation*}
$$

for $v \sim u \gg v_{t e}$. Show that, due to these orderings, the equation for G_{e} simplifies to

$$
\frac{3 \sqrt{\pi} \nu_{e i}}{4 Z v^{2}}\left(\frac{2 T_{e}}{m_{e}}\right)^{3 / 2}\left(\frac{\mathrm{~d} G_{e}}{\mathrm{~d} v}-\frac{1+Z}{v} G_{e}\right)=-\frac{3 F_{R F}}{4 \pi m_{e} u^{3}} \delta(v-u) .
$$

Solve for G_{e} and calculate the electron flux $n_{e} \mathbf{u}_{e}=\int f_{e} \mathbf{v} \mathrm{~d}^{3} v$. Compare the result with the electron flux driven by an electric field force that is of the same size as the momentum injected by the waves, $-e n_{e} \mathbf{E}=F_{R F} \hat{\mathbf{z}}$.
2. In Braginskii's model, the expressions for the parallel electron heat flux and the parallel friction are

$$
\begin{aligned}
q_{e \|} & =-\frac{A_{11} p_{e}}{m_{e} \nu_{e i}} \hat{\mathbf{b}} \cdot \nabla T_{e}+A_{12} p_{e}\left(u_{i \|}-u_{e \|}\right), \\
F_{e i \|} & =A_{21} n_{e} \hat{\mathbf{b}} \cdot \nabla T_{e}+A_{22} n_{e} m_{e} \nu_{e i}\left(u_{i \|}-u_{e \|}\right),
\end{aligned}
$$

where n_{e}, T_{e} and $p_{e}=n_{e} T_{e}$ are the electron density, temperature and pressure, respectively, $u_{i \|}-u_{e \|}$ is the difference between the ion and electron fluid parallel velocities, $\hat{\mathbf{b}}=\mathbf{B} / B$ is the unit vector in the direction of the magnetic field \mathbf{B}, m_{e} is the electron mass, $\nu_{e i}=$ $(4 \sqrt{2 \pi} / 3)\left[Z e^{4} n_{e} \ln \Lambda_{e i} /\left(4 \pi \epsilon_{0}\right)^{2} m_{e}^{1 / 2} T_{e}^{3 / 2}\right]$ is the electron-ion collision frequency, e is the proton charge, $Z e$ is the ion charge, $\ln \Lambda_{e i}$ is the Coulomb logarithm, and ϵ_{0} is the vacuum permittivity. The coefficients A_{11}, A_{12}, A_{21} and A_{22} are order unity functions of the charge number of the ions Z.
In the notes, we derived the coefficients A_{11}, A_{12}, A_{21} and A_{22} for $Z=1$. We found that A_{11} and A_{22} are positive, A_{22} is less than one, and $A_{12}=A_{21}$ (the equality $A_{12}=A_{21}$ is known as Onsager symmetry). In this problem, you will prove these properties of the coefficients A_{11}, A_{12}, A_{21} and A_{22} for all Z.
(a) [5 marks] Show that the equation for the gyroraveraged first order perturbation to the electron distribution function, $\left\langle f_{e 1}\right\rangle_{\varphi}$, can be written in the form

$$
\nu_{e i} \mathcal{C}\left[\left\langle f_{e 1}\right\rangle_{\varphi}\right]=\left[F_{T}(w) w_{\|} \hat{\mathbf{b}} \cdot \nabla \ln T_{e}+\frac{F_{J}(w) m_{e} \nu_{e i} w_{\|}\left(u_{i \|}-u_{e \|}\right)}{T_{e}}\right] f_{M e},
$$

where $\mathcal{C}\left[\left\langle f_{e 1}\right\rangle_{\varphi}\right]$ is a linear integro-differential operator, and $F_{T}(w)$ and $F_{J}(w)$ are functions of the velocity magnitude. Give explicitly $\mathcal{C}[f], F_{T}(w)$ and $F_{J}(w)$. Show as well that the parallel electron heat flux and the friction can be written as

$$
\begin{aligned}
q_{e \|} & =T_{e} \int\left\langle f_{e 1}\right\rangle_{\varphi} F_{T}(w) w_{\|} \mathrm{d}^{3} w \\
F_{e i \|} & =n_{e} m_{e} \nu_{e i}\left(u_{i \|}-u_{e \|}\right)+m_{e} \nu_{e i} \int\left\langle f_{e 1}\right\rangle_{\varphi} F_{J}(w) w_{\|} \mathrm{d}^{3} w
\end{aligned}
$$

(b) [5 marks] Show that, for gyrophase-independent functions f and g that satisfy $\int f \mathrm{~d}^{3} w=$ $0=\int g \mathrm{~d}^{3} w, \int f w_{\|} \mathrm{d}^{3} w=0=\int g w_{\|} \mathrm{d}^{3} w$ and $\int f w^{2} \mathrm{~d}^{3} w=0=\int g w^{2} \mathrm{~d}^{3} w$, the linear operator $\mathcal{C}[f]$ satisfies the properties

$$
\int \frac{f}{f_{M e}} \mathcal{C}[f] \mathrm{d}^{3} w<0 .
$$

and

$$
\int \frac{g}{f_{M e}} \mathcal{C}[f] \mathrm{d}^{3} w=\int \frac{f}{f_{M e}} \mathcal{C}[g] \mathrm{d}^{3} w .
$$

(c) [10 marks] Using parts (a) and (b), prove that $A_{11}>0, A_{22}<1$ and $A_{12}=A_{21}$. [Hint: you may want to use the functions $G_{T}(w)$ and $G_{J}(w)$ defined such that $\mathcal{C}\left[G_{\alpha} w_{\|} f_{M e}\right]=$ $F_{\alpha} w_{\|} f_{M e}$ with $\left.\alpha=T, J.\right]$
(d) [10 marks] Set $\hat{\mathbf{b}} \cdot \nabla T_{e}=0$ and rewrite the equation for $\left\langle f_{e 1}\right\rangle_{\varphi}$ as

$$
\begin{equation*}
C_{e e}^{(\ell)}\left[g_{e}\right]+\mathcal{L}_{e i}\left[g_{e}\right]=\frac{F_{e i \|} w_{\|}}{p_{e}} f_{M e}, \tag{4}
\end{equation*}
$$

where $C_{e e}^{(\ell)}$ is the linearized electron-electron collision operator, $\mathcal{L}_{e i}$ is the Lorentz operator for electron-ion collisions, $g_{e}=\left\langle f_{e 1}\right\rangle_{\varphi}+K w_{\|} f_{M e}$ and K is a constant. Determine the constant K. Use $\int g_{e} w_{\|} \mathrm{d}^{3} w$ and equation (4) to show that $A_{22}>0$.
3. Consider a plasma composed of one ion species with charge e and mass m_{i} and electrons with charge $-e$ and mass m_{e}. This plasma sits on a constant magnetic field pointing in the z-direction, $\mathbf{B}=B \hat{\mathbf{z}}$. The magnetic field is sufficiently large and collisions are sufficiently frequent that the use of Braginskii's equations is justified. The density n_{e} and the temperatures T_{i} and T_{e} are spatially uniform, and the plasma current density \mathbf{J} is zero. The ion velocity $\mathbf{u}_{i}(t, x)=u_{i z}(t, x) \hat{\mathbf{z}}$ is a function of x and time, and it points in the z-direction.
(a) [10 marks] Show that the total-momentum equation can be written as

$$
\frac{\partial u_{i z}}{\partial t}=\frac{6 m_{i} T_{i} \nu_{i i}}{5 e^{2} B^{2}} \frac{\partial^{2} u_{i z}}{\partial x^{2}},
$$

where $\nu_{i i}=(4 \sqrt{\pi} / 3)\left[e^{4} n_{e} \ln \Lambda_{i i} /\left(4 \pi \epsilon_{0}\right)^{2} m_{i}^{1 / 2} T_{i}^{3 / 2}\right]$ is the ion-ion collision frequency, $\ln \Lambda_{i i}$ is the Coulomb logarithm, and ϵ_{0} is the vacuum permittivity.
(b) [10 marks] Solve the equation for $u_{i z}(t, x)$ for the initial condition

$$
u_{i z}(t=0, x)= \begin{cases}-u_{0} & \text { for } x<0 \\ u_{0} & \text { for } x>0\end{cases}
$$

and the boundary conditions $u_{i z}(t, x \rightarrow-\infty)=-u_{0}$ and $u_{i z}(t, x \rightarrow \infty)=u_{0}$. Sketch the time evolution of $u_{i z}$.
[Hint: you may want to use the self-similar form $u_{i z}(t, x)=U(\xi)$ with $\xi=x / \sqrt{t}$.]
(c) [5 marks] What difference, if any, does it make if the ion velocity is pointing in the y direction; i.e. $\mathbf{u}_{i}(t, x)=u_{i y}(t, x) \hat{\mathbf{y}}$?

