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1. In this problem, we study the evolution of a beam of particles of species α with charge Zαe
and mass mα that collides with a background composed of particles of species β with charge
Zβe and mass mβ. At t = 0, the distribution function of particles of species α is

fα(v, t = 0) = nα0δ(v − uα0ẑ), (1)

where nα0 and uα0 are the density and average velocity of particles of species α at t = 0, and
δ(v) is the 3D Dirac delta function. The distribution function of species β is a stationary-
Maxwellian,

fβ(v) = nβ

(
mβ

2πTβ

)3/2

exp

(
−
mβv

2

2Tβ

)
. (2)

Here v = |v| and nβ and Tβ are the density and temperature of species β. The density nα
is sufficiently low that we can ignore the collisions between particles of species α and we only
need to consider collisions of particles of species α with particles of species β, leading to the
linear kinetic equation

∂fα
∂t

= Cαβ[fα, fβ]. (3)

Here Cαβ is the Fokker-Planck collision operator.

(a) [10 marks] Derive the following form of the collision operator:

Cαβ[fα, fβ] = ∇v ·
[
fMα(v)

(
ν‖(v)

2
vv +

ν⊥(v)

4
(v2I− vv)

)
· ∇v

(
fα

fMα(v)

)]
. (4)

Here fMα(v) is a stationary-Maxwellian with the temperature of species β, Tβ, and the
density of species α, nα =

∫
fα d3v. (You may refer to the notes and/or the homework to

avoid taking the integrals that lead to ν⊥(v) and ν‖(v).)

(b) [10 marks] To study the behavior of fβ for short times t, ν⊥t ∼ ν‖t � 1, we use the
cylindrical coordinates wz = vz − uα0, w2

⊥ = v2x + v2y and ϕ = arctan(vy/vx). Assuming
wx/uα0 ∼ w⊥/uα0 ∼

√
ν⊥t ∼

√
ν‖t � 1 and ϕ ∼ 1, show that the equation for ν⊥t ∼

ν‖t� 1 is

∂fα
∂t
' 1

wpz

∂

∂wz

(
wpzD‖

∂fα
∂wz

)
+

1

wq⊥

∂

∂w⊥

(
wq⊥D⊥

∂fα
∂w⊥

)
+
D⊥
wr⊥

∂2fα
∂ϕ2

. (5)

Determine the exponents p, q and r and the constants D‖ and D⊥. Give explicitly the
dependence of the constants D‖ and D⊥ on uα0.

(c) [5 marks] Show (by substitution or otherwise) that the solution to equation (5) with
initial condition (1) is of the form

fα(wz, w⊥, t) =
N

t3/2
exp

(
−
τ‖w

2
z

2u2α0t
−
τ⊥w

2
⊥

2u2α0t

)
. (6)

Determine the constants N , τ‖ and τ⊥ and describe the evolution of fα. Are our assump-
tions wz/uα0 ∼ w⊥/uα0 ∼

√
ν⊥t ∼

√
ν‖t� 1 consistent with this solution?

2. Question 1 gives the short time evolution of the beam. In this question, we study the long
time behavior, ν⊥t ∼ ν‖t� 1.

(a) [5 marks] Rewrite the collision operator in (4) using the spherical coordinates {v, θ, ϕ}
shown in figure 1.
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Figure 1: Spherical coordinates {v, θ, ϕ} for the velocity v.

(b) [5 marks] To solve the equation derived in part (a), we decompose fα into the series

fα(v, θ, ϕ, t) = fMα(v)

∞∑
n=0

∞∑
l=0

l∑
m=−l

Anlm exp(−νnlt)Fnl(v)Y m
l (θ, ϕ). (7)

Here Anlm and νnl are constants, the functions Y m
l (θ, ϕ) are spherical harmonics, and the

functions Fnl(v) have to be determined. The function Fnl vanishes for v → ∞ and it is
regular at v = 0. Show that νnl and Fnl(v) are determined by the eigenvalue problem

1

v2fMα

d

dv

(
v4ν‖fMα

2

dFnl
dv

)
+

[
νnl −

l(l + 1)ν⊥
4

]
Fnl = 0. (8)

(c) [10 marks] Show that the eigenvalues νnl are extrema of the functional

Θ[F ] =
1∫∞

0 v2fMαF 2 dv

[
1

2

∫ ∞
0

ν‖v
4fMα

(
dF

dv

)2

dv +
l(l + 1)

4

∫ ∞
0

ν⊥v
2fMαF

2 dv

]
.

(9)
In other words, show that Θ[Fnl] = νnl and that Θ[Fnl + δF ] − Θ[Fnl] = 0 to first order
in δF � Fnl.

(d) [5 marks] Using the variational principle in equation (9), one can estimate the eigenvalues
νnl for different l, and as a result, one can find the exponential decay of the solution at
t→∞. In this exam, we are only going to obtain the approximate value of the smallest
decay rate ν00 for l = 0. Using the trial function F00(v,K) = mαv

2/2Tβ −K, show that

Θ00(K) ≡ Θ[F00(v,K)] =
N

K2 + aK + b
. (10)

Determine the constants N , a and b. Then, by minimizing Θ00(K) with respect to K,
determine the smallest decay rate for l = 0.

[Hint: ∫ ∞
0

ν‖v
6fMα dv =

3

4π
√

2

nαT
2
βναβ

m2
α

, (11)
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where

ναβ =
16
√
π

3

Z2
αZ

2
βe

4nβm
1/2
α m

1/2
β ln Λαβ

(4πε0)2(mα +mβ)3/2T
3/2
β

(12)

is the frequency of collisions of particles of species α with particles of species β.]

3. Consider a plasma composed of one ion species with charge e and mass mi, and electrons with
charge −e and mass me in a gravitational field −gẑ (that is, for species s = i, e, in addition to
the pressure force −∇ps and the electromagnetic force Zse(E+us×B), we need to include the
force −nsmsgẑ in the momentum equations). The plasma satisfies Braginskii’s assumptions

ρe
L
� ρi

L
� λii

L
∼ λee

L
∼ λei

L
� 1, (13)

where ρs is the characteristic gyroradius of species s, and λss′ is the mean free path for
collisions between particles of species s and particles of species s′. In addition to Braginskii’s
assumptions, the plasma satisfies

ρi
L
� vA

vti
� |us|

vti
∼
√
gL

vti
∼ λii

L

√
mi

me
� 1, (14)

where L is the characteristic size of the system, vA = B/
√
nimiµ0 is the Alfven speed, and ns,

us, Ts and vts =
√

2Ts/ms are the density, average velocity, temperature and thermal speed
of species s, respectively.

(a) [10 marks] Show that the lowest-order total-momentum equation gives ∇p ' 0, where
p = niTi + neTe is the total pressure (note that neither ns nor Ts must have small
gradients). Show as well that Ampere’s law gives ue ' ui ≡ u, and that the lowest-order
electron-energy equation gives Ti ' Te ≡ T . Thus, using quasineutrality ni = ne ≡ n, the
lowest-order total-momentum equation becomes

∇(nT ) = 0. (15)

(b) [5 marks] Show that the lowest-order vorticity equation (curl of the total-momentum
equation) is

∇×
[
nmi

(
∂u

∂t
+ u · ∇u

)]
= migẑ×∇n, (16)

(c) [10 marks] Show that the lowest-order total-energy equation can be written as

nT

(
∂

∂t
+ u · ∇

)
ln

(
T

n2/3

)
−∇ ·

(
1.05nT

meνee
b̂b̂ · ∇T

)
= 0. (17)

[Hint: use the continuity equation to eliminate ∇ · u from the total-energy equation].

(d) [5 marks] Using the electron-momentum equation, show that

∂B

∂t
= ∇× (u×B). (18)

4. A possible steady-state solution to the equations derived in question 3 is u = 0, a constant
magnetic field B = Bx̂, and density and temperature n(z) and T (z) that only depend on z
and satisfy n(z)T (z) = constant. In this question we are going to study the stability of this
solution.
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(a) [15 marks] Linearize the equations derived in question 3 around the steady-state solution
proposed in this question. Use perturbations of the form Q1 = Q̃ exp(γt + ikx), with
kL� 1, and assume that u1 · ŷ = 0 = B1 · ŷ. You should find the final equations

ñ

n
+
T̃

T
= 0, (19)

ũz = −g
γ

ñ

n
, (20)

T̃

T
− 2

3

ñ

n
+
ũz
γ

d

dz
ln

(
T

n2/3

)
+

1.05T

γmeνee

(
k2
T̃

T
− ikB̃z

B

d lnT

dz

)
= 0, (21)

B̃z
B

=
ikũz
γ

. (22)

[Hint: you only need to use one component of the vorticity equation (16) and one com-
ponent of the induction equation (18).]

(b) [5 marks] Find γ in the limit γ � k2T/meνee. What is the stability condition in this
limit? (Note that this mode is known as MagnetoThermal Instability, and it is important
in astrophysical plasmas. It is driven by the fact that in a magnetized plasma, the heat
flux is parallel to the magnetic field lines.)
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