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1. Consider a one dimensional Fermi gas described by the Hamiltonian

H =
∑
p

ε(p) c†pcp + i∆
∑
p>0

[
c†pc
†
−p − c−pcp

]
,

where the c’s are fermionic annihilation operators with anti-commutation relations

{cp, c†k} = δp,k.

The allowed values for p are

p =
2π

L
n ,

where n are integers.

(a) [5 marks] (a) What is the ground state for ∆ = 0 and

ε(p) = α(p4 − βp2 + µ) , α, β, µ > 0.

Derive an expression for the ground state energy as a sum.

(b) [5 marks] (b) Show that cp

c†−p

 =

 cos θp i sin θp

i sin θp cos θp

 αp

α†−p

 ,

defines a Bogoliubov transformation for fermionic creation/annihilation operators if the
angles θp fulfil a certain condition. What is this condition?

(c) [8 marks] (c) Consider now the Hamiltonian H with

ε(p) =
p2

2m
+ µ ,

where µ > 0. Show by an explicit calculation that H can be written as

H =
∑
p

E(p)α†pαp + const,

where

E(p) =

{
µ if p = 0√
ε2(p) + ∆2 else

.

(d) [7 marks] (d) Taking into account the zero momentum mode, what is the ground state of
H for µ > 0? What is the ground state expectation value of the fermion number operator
N̂ =

∑
p c
†
pcp ? Construct a simple excited state with momentum k > 0 and determine

the expectation value of N̂ in this state. Discuss the physical meaning of your result.
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2. (a) [6 marks] (a) Describe the transfer matrix method for calculating the partition function
for a system of Ising spins σ1, . . . , σL (σj = ±1) described by an energy of the form E =∑L

j=1E0(σj , σj+1) with E0(σj , σj+1) = E0(σj+1, σj) and periodic boundary conditions
σL+1 = σ1.

(b) [3 marks] (b) Describe how to modify the transfer matrix method for accommodating
open boundary conditions, i.e. an energy of the form E =

∑L−1
j=1 E0(σj , σj+1) with

E0(σj , σj+1) = E0(σj+1, σj).

(c) [12 marks] (c) Consider an Ising model defined on the lattice shown below (the lattice
has 3L/2 sites, σj = ±1, τk = ±1 and we impose periodic boundary conditions)

2

σ σ σ σσ

τ τ

1 2 3 54

1

...

The energy is given by

E = J

L∑
j=1

σjσj+1 + J

L/2∑
j=1

(σ2j−1 + σ2j)τj ,

where J > 0 and we impose periodic boundary conditions σL+1 = σ1.

Calculate partition function at T > 0 by means of the transfer matrix method and show
that the free energy per site f(T ) in the thermodynamic limit is given by

f = −kBT
3

ln
(
3 + e−4βJ + e−2βJ + 3e2βJ

)
.

(d) [4 marks] (d) Calculate the entropy per site

s = −∂f(T )

∂T

in the limit of low temperatures. Give a physical interpretation of your result.
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