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1. (a) [6 marks] Describe the transfer matrix method for calculating the partition function for
a system of spins σ1, . . . , σL with σj = ±1 on a ring (i.e. we impose periodic boundary

conditions) described by an energy of the form E =
∑L

j=1E0(σj , σj+1) with E0(σj , σj+1) =
E0(σj+1, σj).

(b) [10 marks] Now consider an Ising-like model comprised of alternating spins σj = ±1
and τj = 0,±1 (the lattice has altogether 2L sites and we impose periodic boundary
conditions)

...

2σ σσ
1 2 3τ1

τ

The energy is given by

E = −J
L∑
j=1

σjτj + τjσj+1 , (1)

where J > 0 and we impose periodic boundary conditions σL+1 = σ1. Calculate the
partition function for model defined in (1) at T > 0 by means of the transfer matrix
method. What is the free energy per site in the thermodynamic limit?

(c) [5 marks] Give an explicit calculation of the thermal average of σ1 in the limit of large L.

(d) [4 marks] Calculate the thermal average of τ21 in the limit of large L.
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2. Consider a one-dimensional quantum spin model with Hamiltonian

H = −J
L∑
i=1

Sxi S
x
i+1 + Syi S

y
i+1 − hS

L∑
i=1

Sxi , (2)

where J, h > 0 and we have a spin-S on each site of the lattice, i.e. (Sxi )2 + (Syi )2 + (Szi )2 =
S(S + 1). We impose periodic boundary conditions SαL+1 = Sα1 .

(a) [5 marks] What is the classical ground state of this model? Justify your answer by a
calculation. [Hint: consider (Sxj , S

y
j , S

z
j ) to be a classical vector of length S].

(b) [4 marks] Let S̃xj , S̃yj , S̃zj be spin-S operators on site j of a one-dimensional lattice.
Consider S to be large. The Holstein-Primakoff representation is defined by

S̃zj = S − a†jaj , S̃+
j = S̃xj + ıS̃yj =

√
2S − a†jaj aj , [aj , a

†
`] = δj,`.

Explain the nature and usefulness of this representation. Comment on complications that
generally could arise.

(c) [6 marks] Apply the Holstein-Primakoff representation to the HamiltonianH. How should

you choose the spin operators S̃αj to be related to Sβj and why?

Carry out an expansion of H in inverse powers of S. Ignore the constant contribution
and drop all terms that grow more slowly than S, when S becomes large. Show that the
resulting Hamitonian HLSW, the linear spin wave approximation to H, takes the form

HLSW =
L∑
j=1

A(a†jaj+1 + a†j+1aj) +B(ajaj+1 + a†ja
†
j+1) + Ca†jaj ,

and determine A, B and C.

(d) [6 marks] Show that HLSW can be written in the form (you may drop constant contribu-
tions).

HLSW =
∑
k

ε(k)b†(k)b(k) + const. ,

where b†(k), b(k) are bosonic creation and annihilation operators.

(e) [4 marks] Obtain an expression for the expectation values

〈GS|Sαj |GS〉 , α = x, y, z

in terms of a momentum sum and discuss the meaning of your result.
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