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1. Magnetohydrodynamics.

This is a model which was developed in the 1960s to calculate the angular momentum carried
away by the solar wind as a result of the torque exerted by the solar magnetic field on the
wind flow (L. Mestel, 1961, MNRAS, 122, 473).

We use cylindrical coordinates (r, θ, z) and assume axial symmetry and steady–state. We write
the magnetic field and velocity as B = Bp +Bθ and v = vp +vθ, where the subscripts ‘p’ and
‘θ’ indicate the poloidal (in the (r, z)–plane) and toroidal components, respectively. We define
the angular velocity Ω such that vθ = rΩ.

For a scalar ψ and vector u, you may assume, in cylindrical coordinates:
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(a) [7 marks] Justify that ∇× (v×B) = 0. Using this relation, show that ∇× (vp×Bp) = 0
and ∇× (vp×Bθ + vθ×Bp) = 0. Show that the first equation implies vp = κBp, where
κ is a scalar (hint: if the curl of a vector is zero, the vector can be written as the gradient
of a scalar). Show that the second equation implies that

B ·∇
(

Ω− κBθ
r

)
= 0,

that is to say the quantity in parentheses, which we note Ω0, is constant along field lines.
Comment on this result when κ = 0 (this is called Ferraro’s law).

(b) [3 marks] Using the mass conservation equation, show that ρκ ≡ η is constant along field
lines.

(c) [7 marks] Write the θ–component of the equation of motion, and show that

r2Ω− rBθ
ηµ0

≡ l

is constant along field lines. Interpret the terms in this expression.

(d) [5 marks] Give an expression for Ω along a field line as a function of r, ρ and the constants
defined above. Discuss the cases B2

p/µ0 � ρv2p and B2
p/µ0 � ρv2p (explain the physical

meaning of these terms).

(e) [3 marks] Using the expression for Ω found above, calculate l at the Alfvén critical point
rA, defined as the radius where vp = vA,p, with vA,p being the poloidal component of the
Alfvén velocity. Express l as a function of rA and Ω0.
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2. Complex Fluids.

This question is about Stokes flow in an incompressible fluid with dynamic viscosity µ.

(a) [4 marks] Suppose that the fluid occupies a volume V . The fluid velocity u = E · x on
the boundary ∂V , where E is a symmetric, traceless tensor that depends only upon time.
Show that ∫

V
e dV = |V |E,

where the strain rate e has components eij = 1
2(∂iuj + ∂jui), and |V | is the volume of V .

(b) [4 marks] Now suppose that the volume V encloses a particle occupying the volume Vp.
The particle is made of a linear elastic material that deforms uniformly, so that u = Ḋ ·x
in Vp, where Ḋ is the derivative of a symmetric, traceless tensor D that depends only
upon time. Show that ∫

Vf

e dV = |V |E− |Vp| Ḋ,

where Vf = V \ Vp is the volume outside the particle occupied by fluid

(c) [4 marks] The stress inside the volume Vp is σ = − pI + 2GD, where p is the pressure,
I is the identity, and G is a constant. Show that the average stress in the volume V is

〈σ〉 = −〈p〉I + 2µE + φ (2GD− 2µ Ḋ),

where φ = |Vp|/|V | is the fraction of the volume V occupied by the particle. The average
of a quantity · · · over the volume V is

〈· · · 〉 =
1

|V |

∫
V
· · · dV.

(d) [9 marks] Now suppose that the volume Vp comprises a small sphere in the centre of a
cube V . The deformation of the location of the boundary ∂Vp is negligibly small, so any
necessary boundary conditions can be imposed on the surface of the undeformed sphere.

By considering a flow of the form u = Ḋ · x + ũ in Vf , show that the normal stress in the
fluid just outside ∂Vp is

σ · n = − pn + µE · n− 3µ Ḋ · n.

Use continuity of the normal stress to show that D evolves according to

D + τ Ḋ =
5

3
τ E, where τ =

3µ

2G
.

(e) [4 marks] Show that the volume average of the traceless part of the stress, S =
〈
σ − 1

3 ITrσ
〉
,

evolves according to

S + τ Ṡ = 2µ
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)
τ Ė,

and comment on the behaviour as τ → 0.

[Hint: The Stokes flow ũ around a rigid sphere of radius a that satisfies the boundary conditions

ũ = 0 on |x| = a, ũ ∼ Ẽ · x as |x| → ∞

produces a stress σ̃ with normal component σ̃ · n = 5µ Ẽ · n on |x| = a.]
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