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You should submit answers to both questions.

You have 2 hours writing time to complete the paper and up to 30 minutes technical time for
uploading your file. The allotted technical time must not be used to finish writing the paper.

Mode of completion (format in which you will complete this exam): handwritten
You are permitted to use the following material(s):

Calculator (candidate to provide)
The use of computer algebra packages is not allowed.
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1. Magnetohydrodynamics. In certain models of magnetised plasmas, collisions are not suf-
ficiently strong to isotropise pressure with respect to the local direction b = B/|B| of the
magnetic field B. It is assumed, therefore, that pressure is a diagonal matrix

p = p⊥(I− bb) + p‖bb (1)

[in index notation, this means pij = p⊥(δij − bibj) + p‖bibj ]. The perpendicular (p⊥) and
parallel (p‖) pressures are then calculated either kinetically or from some appropriate (or at
least plausible) fluid model.

(a) [10 marks] Consider a static equilibrium with constant, uniform magnetic field B0 = B0ẑ,
density ρ0, and pressures p⊥0 = p‖0 = p0 (isotropic equilibrium pressure). Start from
the MHD equations for density, magnetic field and fluid velocity, the latter with the
anisotropic pressure force −∇·p instead of the usual gradient of isotropic pressure. Adopt
the Reduced-MHD ordering, in which relative perturbations of all fields are the same order
as k‖/k⊥ � 1. Show that the reduced equations for the Alfvénic fields (perturbations
of the velocity, u⊥, and magnetic field, δB⊥, perpendicular to B0) are unaffected by
the introduction of the anisotropic pressure, while the perturbations of the magnetic-
field strength (δB), density (δρ), parallel velocity (u‖), and parallel pressure (δp‖) are
related by

d

dt

(
δB

B0
− δρ

ρ0

)
= b · ∇u‖, ρ0

du‖

dt
= −b · ∇δp‖, (2)

where d/dt = ∂/∂t+ u⊥ · ∇ and b · ∇ = ∂/∂z + (δB⊥/B0) · ∇⊥.

[For this open-book exam, you need not rederive, and may use, any results derived in the
Lecture Notes, if you state them clearly.]

(b) [10 marks] A model often employed to calculate the anisotropic pressure in such contexts
is the so-called double-adiabatic, or Chew–Goldberger–Low (CGL), equations,

d

dt

p⊥
ρB

= 0,
d

dt

p‖B
2

ρ3
= 0, (3)

which express the particles conserving certain adiabatic invariants of motion. Use the
linearised version of these equations, and that of equations (2), to find the dispersion
relation for the slow waves in the CGL approximation and to show that, in the limit of
β = 8πp0/B

2
0 � 1, these “slow waves” in fact propagate much faster than Alfvén waves.

(c) [5 marks] Explain in what way the physics of these CGL slow waves is different from the
physics of the slow waves in standard MHD with isotropic pressure, and why, therefore,
they are able to propagate faster.
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2. Complex Fluids. This is a question about Stokes flow for an incompressible fluid with
viscosity µ and no body forces. The dissipation due to viscosity in a volume V of fluid is

Φ = 2µ

∫
V
eijeij dV, where eij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Consider a volume V0 of fluid with a prescribed velocity on the outer boundary S0. The
resulting Stokes flow in V0 has velocity u(0), stress σ(0), and dissipation Φ(0).

Now suppose that rigid particles are introduced into the flow, to occupy volumes V1, . . . , VN
with boundaries S1, . . . , SN . The velocity prescribed on the outer boundary S0 is unchanged.
The resulting Stokes flow in the remaining volume Vfluid = V0 \ (V1 ∪ · · · ∪ VN ) has velocity u,
stress σ, and dissipation Φ.
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(a) [3 marks] Show that the dissipation in any volume V of fluid with boundary S is

Φ =

∫
S
uiσijnj dS,

where n is the unit normal pointing out of the fluid on S. Give a physical interpretation
of this result.

(b) [3 marks] Show that the viscous dissipation in the flow around the particles is

Φ =

∫
Sall

u(0) · σ · n dS +

N∑
p=1

∫
Sp

(
u− u(0)

)
· σ · n dS,

where Sall = S0 ∪ S1 ∪ · · · ∪ SN is the boundary of Vfluid.

(c) [9 marks] Show further that Φ = Φ(0) + Φ′, where

Φ′ =

N∑
p=1

∫
Sp

u · σ(0) · n +
(
u− u(0)

)
· σ · n dS,

and show that the contribution from u · σ(0) · n vanishes for rigid particles.

[You may use the reciprocal theorem without proof provided you state it clearly.]

Question continues overleaf. . .
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(d) [4 marks] Now suppose that the particles are small compared with the size of V0, so we
can expand the velocity field u0 in the region Vp occupied by particle p with centre Xp as

u(0)(x) = u(0)
p + Ω(0)

p × (x−Xp) + E(0)
p · (x−Xp) + · · · ,

where Ω
(0)
p is a vector and E

(0)
p is a symmetric traceless matrix. Hence show that

Φ′ =

N∑
p=1

E(0)
p :

∫
Sp

(x−Xp)σ · n dS,

for particles with no external forces or torques acting upon them. The : denotes a double
contraction between two rank-2 tensors.

(e) [6 marks] Finally, suppose that the particles are widely separated small spheres of radius
a, and that the boundary conditions on S0 are u(0) = E(0) · x, where E(0) is a symmetric
traceless matrix.

You may assume that the normal stress on the surface of each sphere is

σ · n = 5µE(0) · n.

Evaluate Φ′ for this system, and hence derive the Einstein effective viscosity

µE = µ

(
1 +

5

2
φ

)
for a dilute suspension of rigid spheres with volume fraction φ.
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