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You should submit answers to both of the two questions.
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assigning to each part of the question.
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1. Magnetohydrodynamics. Most of this question is not on MHD, but deals with a system of
equations describing a somewhat analogous system embedded into an external field and sup-
porting anisotropic wave-like perturbations: incompressible fluid rotating at angular velocity
Ω = Ωẑ, where ẑ is the unit vector in the direction of the z axis. The velocity field u in such
a fluid satisfies the following equation

∂u

∂t
+ u · ∇u = −∇p+ 2u×Ω, (1)

where pressure p is found from the incompressibility condition ∇ · u = 0, the last term on
the right-hand side is the Coriolis force, the centrifugal force has been absorbed into p, and
viscosity has been ignored.

(a) [7 marks] Consider infinitesimal perturbations of a static (u0 = 0), homogeneous equi-
librium of (1), u ∝ e−iωt+ik·r, where k = (k⊥, 0, k‖) (without loss of generality; the
subscripts refer to directions perpendicular and parallel to the axis of rotation). Show
that the system supports waves with the dispersion relation

ω = ±2Ω
k‖

k
, (2)

where k = |k|. These are called inertial waves.

(b) [4 marks] In the case k‖ � k⊥, determine the direction of propagation of the inertial
waves. Determine also the relationship between the components of the velocity vector u
associated with the wave. Comment on the polarisation of the wave.

(c) [9 marks] When rotation is strong, i.e., when Ω� ku, perturbations in a rotating system
are anisotropic with ε = k‖/k⊥ � 1. Order the linear and nonlinear time scales to be
similar to each other and work out the ordering of all relevant quantities, namely, u⊥
(horizontal velocity), u‖ (vertical velocity), δp (perturbed pressure), ω, Ω, k‖, k⊥ with
respect to each other and to ε. Using this ordering, show that the motions of a rotating
fluid satisfy the following reduced equations

∂

∂t
∇2
⊥Φ +

{
Φ,∇2

⊥Φ
}

= 2Ω
∂u‖

∂z
, (3)

∂u‖

∂t
+
{

Φ, u‖
}

= −2Ω
∂Φ

∂z
, (4)

where {f, g} = (∂xf)(∂yg)− (∂yf)(∂xg) and Φ is the stream function of the perpendicular

velocity, i.e., to the lowest order in ε, u
(0)
⊥ = ẑ×∇⊥Φ. Note that, in order to obtain the

above equations, you will need to work out ∇⊥ · u⊥ to both the lowest and next order

in ε, i.e., both ∇⊥ · u
(0)
⊥ and ∇⊥ · u

(1)
⊥ .

(d) [2 marks] Show that any purely horizontal flows in a strongly rotating fluid must be
exactly two-dimensional (i.e., constant along the axis of rotation).

(e) [3 marks] For a strongly rotating, incompressible, highly electrically conducting fluid em-
bedded in a strong uniform magnetic field parallel to the axis of rotation, discuss without
calculation under what conditions you would expect anisotropic (k‖ � k⊥) Alfvénic and
slow-wave-like (pseudo-Alfvénic) perturbations to be decoupled from each other? The
Alfvén speed is vA.
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2. Complex Fluids.

(a) [5 marks] Consider two Stokes flows u1, σ1 and u2, σ2 generated by body forces f1 and
f2 in a volume V with boundary ∂V .

Show that∫
V
f (1) · u(2) dV +

∫
∂V

u(2) · σ(1) · n dS =

∫
V
f (2) · u(1) dV +

∫
∂V

u(1) · σ(2) · n dS.

(b) [6 marks] Show that the flow

p(x) =
3µa

2

U · x
r3

, u(x) = U

(
3a

4r
+

a3

4r3

)
+ (U · x)x 3

4

(
a

r3
− a3

r5

)
,

with r = |x| satisfies the boundary condition(s) required for the flow of a fluid with
viscosity µ around a sphere of radius a translating with velocity U whose centre is instan-
taneously located at x = 0 in unbounded fluid. Show further that the surface traction
σ · n is constant on r = a, and hence derive Stokes’ formula for the drag force on the
sphere.

(c) [10 marks] Consider a Stokes flow u∞ generated by body forces in an unbounded fluid.
A sphere of radius a is inserted at x = 0. The body forces all lie outside the sphere, and
are undisturbed by the insertion of the sphere. Call the resulting Stokes flow uS .

By applying the reciprocal theorem to the flow in part (b) and to the disturbance uS−u∞
show that the sphere translates with velocity

V =
1

4πa2

∫
|x|=a

u∞(x) dS.

(d) [4 marks] Show further that

V =

(
1 +

a2

6
∇2

)
u∞

∣∣∣∣
x=0

.

[Hint: consider a Taylor expansion of u∞ and consider ∇2p.]
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