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1. Magnetohydrodynamics. In a version of magnetohydrodynamics often used to describe
magnetised, weakly collisional plasmas, the pressure gradient in the momentum equation is
replaced with the divergence of a pressure tensor:

ρ
du

dt
≡ ρ

(
∂u

∂t
+ u · ∇u

)
= −∇ · P +

j×B

c
, (1)

where ρ is density, u velocity, j current density, and B magnetic field. The pressure tensor
is P = p⊥(I − bb) + p‖bb, where b = B/|B| is the unit vector in the direction of the (local,
instantaneous) magnetic field, I is the unit matrix and p⊥ and p‖ are scalar perpendicular and
parallel pressures, respectively. These pressures satisfy certain evolution equations, the explicit
form of which will not be required here. All other fields (ρ, B, j) satisfy the same equations
as they do in standard MHD.

(a) [5 marks] Show that the rate of change of momentum in this approximation can be written
in terms of modified total pressure and modified Maxwell stress (tension force) as follows

ρ
du

dt
= −∇

(
p⊥ +

B2

8π

)
+∇ ·

[
bb

(
p⊥ − p‖ +

B2

4π

)]
. (2)

Comment on the physical effect that you expect positive or negative pressure anisotropy
p⊥ − p‖ to have on the motion of the fluid.

(b) [12 marks] Given a static, spatially homogeneous equilibrium state with constant ρ = ρ0,
p⊥ = p⊥0, p‖ = p‖0, u = 0, B = B0ẑ (ẑ is the unit vector in the z direction), consider
its infinitesimal perturbations δρ, δp⊥, δp‖, u and δB, assuming they are all of the form
∝ exp(−iωt+ ik · r), where k = (k⊥, 0, k‖). Show that these perturbations satisfy

−ωρ0u = −k⊥x̂
(
δp⊥ +

B0δB

4π

)
−k‖ẑ

[
δp‖ + (p⊥0 − p‖0)

δB

B0

]
+δb k‖

(
p⊥0 − p‖0 +

B2
0

4π

)
,

(3)
where x̂ is the unit vector in the x direction and δB and δb are the perturbed field
strength and direction, respectively. While in general, besides the induction equation,
one also needs equations for δp⊥ and δp‖ to close the above equation, show that Alfvénic
perturbations decouple and do not depend on δp⊥ and δp‖. Derive their dispersion relation
and describe/sketch the fields and displacements associated with them.

(c) [3 marks] Under what condition do the Alfvénic perturbations become unstable? This is
called the firehose instability. In the intergalactic medium, the typical pressure anisotropy
is |p⊥ − p‖|/p‖ ∼ 10−2 and plasma beta β = 8πp‖/B

2 ∼ 102 (or larger). In (certain parts
of) fusion devices, |p⊥ − p‖|/p‖ ∼ 10−1 and β ∼ 10−2 (all these numbers are order-of-
magnitude). Which of these plasmas is likely to suffer from the firehose instability?

(d) [5 marks] Can you explain the physical mechanism of the firehose instability? What
changes in the feedback to fluid displacements make Alfvénic perturbations in a pressure-
anisotropic plasma described by the above equations unstable, while when p⊥0 = p‖0,
these perturbations behave as propagating waves? Do firehose perturbations propagate
as well as grow?
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2. Complex Fluids.

(a) [5 marks] Show that a material vector field ` in an incompressible fluid evolves according
to

∂`

∂t
+ u · ∇` = ` · ∇u.

Hence explain why the upper convected derivative

∂A

∂t
+ u · ∇A− A · ∇u− (∇u)T · A,

with the convention that [A · ∇u]ij = Aik∂kuj , is a suitable time derivative for a second-
rank symmetric tensor A.

(b) The evolution of the stress T in a certain type of incompressible viscoelastic fluid with
density ρ0 is described by the equation

T + τ

[
∂T

∂t
+ u · ∇T− T · ∇u− (∇u)T · T

]
+ α (T · E + E · T) = 2µE, (†)

where α, τ and µ are constants, and E =
1

2

(
∇u + (∇u)T

)
.

(i) [2 marks] Give a physical interpretation of the constants τ and µ.

(ii) [4 marks] Show that small-amplitude flows with u = u(y, t)x̂ are governed by the
linearised equations

ρ0
∂u

∂t
=
∂T

∂y
, T + τ

∂T

∂t
= µ

∂u

∂y
,

where T is a component of the tensor T that you should determine.

(iii) [5 marks] Hence show that linear waves proportional to exp(iky + σt) exist with
complex frequencies

σ = − 1

2τ

[
1± (1− 4τνk2)1/2

]
,

where ν is a constant that you should determine. Interpret the limiting behaviour(s)
as τ → 0.

(c) Now consider steady, but not necessarily small-amplitude, shear flows of the form u = γ̇ y x̂
in the same fluid.

(i) [4 marks] Find the diagonal components of the stress tensor T, and show that the
ratio of the normal stress differences N1 = Txx − Tyy and N2 = Tyy − Tzz is

N2

N1
= − α

2τ
.

(ii) [5 marks] Find the shear stress Txy and give a sketch of its behaviour as a function
of γ̇, identifying the limiting behaviours when γ̇ is small and when γ̇ is large. What
kind of viscoelastic fluid is described by the equation (†) above, and what condition
should α satisfy?
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