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Part I 

A. STATISTICS 

 Numbers and percentages in each class. 

See Table 1. 

 

 

 

 

 

 

 

 

Table 1: Numbers and percentages in each class 

 

 Numbers of vivas and effects of vivas on classes of result.  

As in previous years there were no vivas conducted. 

 Marking of scripts. 

All dissertations and two mini-project subjects were double-marked. In cases of 

significant disagreement between marks, the two markers were consulted to agree a 

reconciled mark. 

 

All written examinations and take-home exams were single-marked according to 
checked model solutions and a pre-defined marking scheme. A comprehensive 
independent checking procedure was followed. 

1



B. New examining methods and procedures  

None. 

C. Changes in examining methods and procedures currently under 
discussion or contemplated for the future 

The Examiners discussed having fewer mini-projects and replacing them with 
invigilated closed-book exams where possible. 

D. Notice of examination conventions for candidates 

Notices to candidates were sent on: 24th October 2024 (first notice), 4th November 2024 
(second notice), 18th February 2025 (third notice), and 6th May 2025 (fourth notice). 

The examination conventions for the 2024-2025 academic year were available to students 
online  
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Part II 

A. General Comments on the Examination 

 

B. Breakdown of the results by gender 

Removed from public version  
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Paper No. of Candidates Average USM StDev USM

Advanced Fluid Dynamics 9 71 11.4

Advanced Philosophy of Physics 3 83 -1.53

Advanced Quantum Field Theory 49 64 13.2

Advanced Quantum Theory (resit) 1 - -

Algebraic Geometry 2 - -

Algebraic Topology 5 - -

An Introduction to Topological Phases of Matter 9 75 9.36

Anyons and Topological Quantum Field Theory 13 65 19.4

Applied Complex Variables 4 - -

Classical Quantum Compositional Distributional Meaning 3 - -

Collisionless Plasma Physics 5 - -

Computational Complexity 1 - -

Condensed Matter Physics 1 - -

Cosmology 8 67 12.1

Differentiable Manifolds 8 42 31.3

Dissertation (single unit) 18 73 8.8

Dissertation (double unit) 36 76 8.2

Elasticity and Plasticity 1 - -

Field Theories and Collective Phenomena in Condensed Matter 11 71 10.8

Galactic and Planetary Dynamics 5 - -

General Relativity I 31 68 13.3

General Relativity II 19 67 15.9

Geometric Deep Learning 1 - -

Geometric Group Theory 1 - -

Geophysical Fluid Dynamics 5 - -

Groups and Representations 54 72 14.6

Introduction to Quantum Information 32 70 15.2

Introduction to Schemes 2 - -

Kinetic Theory 6 69 9.2

Lie Groups 5 58 11.8

Low-Dimensional Topology and Knot Theory 1 - -

Mathematical Geoscience 3 - -

Networks 9 70 6.3

Non-equilibrium Statistical Physics 11 89 4.6

Numerical Linear Algebra 4 - -

Particle Physics 2 - -

Perturbation Methods 11 67 16.6

Quantum Field Theory 70 69 15.4

Quantum Matter 12 65 18.8

Quantum Processes and Computation 4 - -

Random Matrix Theory 4 - -

Riemannian Geometry 5 - -

String Theory I 33 66 5.8

Supersymmetry and Supergravity 24 60 11.8

Theories of Deep Learning 1 - -

Topics in Fluid Mechanics 2 - -

 
C. Detailed numbers on candidates’ performance in each part of the examina-
tion 

The number of candidates taking each paper is shown in Table 3 and in the Average 

USM per Formal Assessment graph below. In accordance with University 

guidelines, statistics are not given for papers where the number of candidates was 

five or fewer. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 
 

Table 3: Statistics for individual papers 
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The number of candidates taking each homework-completion course is 

shown in Table 4. In accordance with University guidelines, statistics are 

not given for papers where the number of candidates was five or fewer. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Table 4: Numbers taking each homework completion course 

 

Paper No. of candidates % completing course

Advanced Fluid Dynamics 1 -

Advanced Philosophy of Physics - -

Advanced Topics in Plasma Physics 4 -

Algorithms and Computations in Theoretical Physics 14 100

Anyons and Topological Phases of Matter 20 100

Astroparticle Physics 15 100

Collisional Plasma Physics 3 -

Collisionless Plasma Physics 2 -

Conformal Field Theory 26 92.3

Disorder in Condensed Matter 14 100

Galactic and Planetary Dynamics 3 -

Group and Representations 53 100

High Energy Density Plasma Physics 3 -

Kinetic Theory 7 100

Machine Learning Fundamentals with Applications to Physics and Mathematics 23 100

Nonequilibrium Statistical Physics 6 100

Quantum Field Theory in Curved Space 16 100

Quantum Matter 4 -

Quantum Processes in Hot Plasma 3 -

Renormalisation Group 14 85.7

Statist ical Mechanics and Computer Algorithms 23 100

String Theory II 7 100

The Standard Model and Beyond I 18 94.4

The Standard Model and Beyond II 7 100

Topics in Soft and Accret ion Matter Physics 4 -
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D. Assessors’ comments on sections and on individual questions 
 

Advanced Fluid Dynamics 

Question 1. 

The students generally did well on the Magnetohydrodynamics question. Some can- 
didates lost marks for assuming, rather than proving, results discussed in the course. 
Other than this, book work parts were done well. Some students struggled to correctly 
interpret the physical implications of resistivity in the final part of the question. 

Part (a) – Students generally answered this book work part of the question well. Common 
mistakes were sign errors in the Lorentz transform, and misidentifying different terms in 
the induction equation. 

Part (b) – Nearly all students got this part in the end, although there were some very 
inefficient routes to the answer. Lost marks were typically for failing to interpret the 
results, as asked. 

Part (c) – This question on Helicity was more poorly answered. Errors were typically 
technical mistakes, rather than a lack of understanding. 

Part (d) – Some students answered this well, including one excellent answer. Many 
students derived the correct mathematical results, but then misinterpreted. 

Question 2. 

My question was a little easy. One candidate nevertheless obtained a very low mark. 
They could reproduce a lot of material about the resistance matrix formalism from my 
lectures, but it didn’t help them to answer the question I set. 
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Advanced Quantum Field Theory 

 
Question 1 was a question on scalar field theory. Some students had  
difficulty with part (c). In many cases it was to distinguish between  
renormalizable and non-renormalizable terms and the reasons to include or 
omit them from the Lagrangian. Some students also lost marks in part (d) 
due to not performing integration-by-parts correctly. 

Question 2 was on quantum electrodynamics. In part (b) many students 
attempted to derive the form of Πµν , which was not asked to be done in the 
question. Very few made use of the hint that would make the algebra much 
simpler; full points were awarded for any calculation scheme used. Most
students did well to draw the Feynman diagrams and write the amplitudes. 
A very common calculation error was to declare that numerator terms like ℓ·q 
integrate to zero, being odd in ℓ, without recognizing that the denominator
was not symmetric in ℓ. 

Question 3 was on non-Abelian gauge theory. Students generally did well 
on part (a). Some students did not correctly write down the propagator 
in Unitarity and Rξ gauges, and did not correctly explain the connection 
of these expressions in relation to renormalizability of non-Abelian gauge 
theory. 
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Advanced Quantum Theory  

Question 1. 

This question concerns the transfer matrix treatment of the one-dimensional, nearest-
neighbour Ising antiferromagnet. Some parts are very standard but it also includes 
challenging sections. These involve considering spin-spin correlation functions in a finite 
system with periodic boundary conditions and deriving differences in behaviour 
according to whether the number of sites is even or odd. 

Question 2. 

This question is concerned with fermionic Bogoliubov transformations for a two-orbital 
model that is a toy version of the BCS Hamiltonian. As expected, candidates found the 
final section the most difficult. It required them to find the transformation between the 
original vacuum for the problem and the ground state of the Hamiltonian, using methods 
they had seen in other contexts but probably not in this setting. 
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Anyons and Topological Quantum Field Theory  

Question 1. 

This question had a mean of 14/25 with standard deviaton of 7. High score was 23. 
Overall the question seemed to work well. On part (a) either a student knew what gauge 
invariance was or they didn’t. On part (b) many students did not bother to answer the 
last part of the question which cost a few marks. No students fully got the last part of 
the question (transparent can only be bosons or fermions!) although partial credit was 
generous if students said anything intelligent about transparent particles. Part (c) was 
done well by a fiarly large fraction of students. Part (d) was a bit harder. One perfect 
answer was given and a few very close to perfect. However, here some students showed 
that they really didn’t know how to manipulate diagrams even though the “useful 
information” page had everything needed on it. 

Question 2. 

This question had mean of 16/25 with standard deviation 7. High score was 24. Part (a) 
was identical to homework and most students remembered how to do it. The second 
part required only a bit of algebra and almost half of the students failed to get to the right 
answer. Part (c) was done well by almost almost everyone, although a mark was often 
lost by not using isotopy normalization (which would then cause problems in part (d)). 
Part (d) was the challenging piece, but it was a generalization of a homework problem 
and students should have known how to attack it. There were a few perfect or near 
perfect answers. However, a large number of students didn’t get very far with this and 
lost a lot of marks. 
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Collisionless Plasma Physics 
Q1 and Q2 examined the HT part of the course that deals with plasma 
waves. Students performed very well in this section on average and showed 
a good grasp of the material. Overall, the high average mark and students’ 
actual work indicate that the main messages of the course seem to be being  
taken on board. 
 
The standard of answers to Q1 was generally very high; this was not  
unexpected, since this question is a fairly minimal twist on material  
covered in lectures. Part (a) was bookwork, and all students scored full  
marks on this section. I was surprised (and somewhat disappointed) to see that so 
many students took a “kitchen sink” approach to this question,  
resulting in reams of algebra and attempting to repeat the lecture notes  
verbatim, rather than taking a cleaner line to the final result. Part (b) was a  
straightforward calculation, done well by the majority of candidates with  
the exception of a few algebra slips. Parts (c) and (d) didn’t cause any major issues
. Part (e) was done well, and all students managed to connect the  
idea that electrostatic waves propagating parallel to the magnetic field, ϵ∥ = 0,  
are in resonance. 
However, no one made the connection between electrostatic waves and the 
k → ∞ limit of the cold plasma dispersion relation. Part (f) was done well, 
albeit again some candidates took a fairly circuitous route to get to the final result. 
Q2 was reasonably well done but caused more difficulties than Q1. Part (a) 
was fine; all candidates were able to write down the WKB approximation(albeit 
very few candidates were able to do this succinctly) and arrive at the correct  
equation for δE. Part (b) was answered correctly by all candidates. Part (c) cause
d some headaches, and some candidates struggled to write down the correct  
WKB solutions (and were confused about which waves were propagating in  
which regions). Surprisingly few candidates opted to introduce simplifying  
notation in this part of the question, instead preferring to write out complicated  
exponents many times over. Part (d) was well done. Parts (e) and (f) proved 
much more challenging. Many students 
struggled to argue (and apply) the correct boundary conditions. Without this,  
the algebra is quite involved, and this proved the undoing of severalstudents. In 
Part (g), most students recognised that R + T = 1 was astatement of  
conservation of energy (though some tripped over this basedon partially incorrect 
answers to previous parts of the question). No studentsstruggled with the integration 
in Part (h), though the interpretation in termsof tunnelling was often somewhat  
lacking. 

Q3. The standard of answers was quite high, which is consistent with past 
experience of a take-home exam to complete which the students are effectively  
given 5 days (if one includes the weekend).While good, performance was not  

off­scale and, as far as I can tell, the answers looked like a genuine effort, assisted 

by the course materials, but probably not by much else. 
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(a) Checking that the proposed z-pinch equilibrium was indeed an  
equilibrium of KMHD caused to difficulties. 
(b) The linearisation of the momentum and induction equations around 
this equilibrium was also performed competently, with the approximations 
leading to the pressure balance correctly applied (the total perpendicular 
pressure gradient dominated the ξy equation); the dispersion relation was 
then obtained from the ξx equation. 
(c) In deriving the perturbed pressures via the kinetic equation, all students 
aimed at, and, as students tend to, ruthlessly achieved, the required result. 
However, not all correctly grasped why mathematically (or physically) no 
resonant denominators popped up in the expression for δfα. In  
particular, not everyone realised that there would be a term v∥δbx∂f0α/∂x in  
the linearised kinetic equation, despite the transparent hint to that  
effect that appeared in part (d). 
(d) Most understood that the form of the perturbed distribution function 
was simply the result of locally displacing the equilibrium in the radial  
direction. 
(e) Not all students seemed to have a crystal clear idea about the 2D  
interchange instability, how it was replaced by Alfv´en waves at  
sufficiently high k∥, or that a lower limit on k∥ 0 existed in a z pinch (k∥ > 1
/R). But by and large, they could see what roughly happened. Their “educated  
guesses”as to the effect of relaxing such assumptions as low β, and their idea of  
what was special about KMHD vs. MHD, mostly centred on pressure anisotropies.
None mentioned the possibility of Barnes damping playing a role. 
(f) All knew the basic differences between the assumptions behind the ITG 
instability and KMHD, but there was not a lot of clarity about how the two  
regimes connected. In particular, the material in the notes regarding the 
electrostatic approximation obtaining at sufficuently large k∥ (with Alfv´en 
waves propagating away magnetic perturbations) appears not to have been 
particularly firmly grasped. 
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Cosmology  

Question 1. 

Question 1 was attempted by all students. Conceptually, this was the simplest question 
in the exam, as it dealt mostly with background expansion and linear Newtonian growth. 
It required a bit more work in terms of algebra, however, and some students found it hard 
or perhaps more time-consuming than expected. Most students were able to get more 
than half of the marks, with an average of 15.1/25. 

Question 2. 

Question 2 was attempted by a majority of the students. It involved the derivation of the 
energy-momentum conservation equation for linear vector perturbations in Newtonian 
and relativistic theory. There was a moderate amount of index algebra and linear 
expansion to do, but most students were able to go through most parts of the question 
without much trouble. 

Question 3. 

Question 3 was only attempted by 2 students. Neither of them were able to complete part 
3 correctly, even though most of the ingredients were already provided. A potential 
hurdle may have been the derivation of the growth prefactor for˙ in the ISW term, 
although this was done in the tutorials. Both students had the right physical intuition, 
though (ISW can only be relevant during Λ domination), and could complete most of the 
question (an average of 15.5/25). 
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Field Theories Collective Phenomena in Condensed Matter  

Question 1. 

Mean raw mark 16.8. This question concerns the imaginary time propagator for a free 
particle. It was done well or very well by most candidates (3 answers at 80% and above) 
and poorly by only a few. As expected, candidates found the final sections of the question 
most difficult. This part is about the relationship between contributions to the path integral 
for the propagator, and the paths followed by a Brownian particle. The relationship was 
discussed in the lectures but not covered in problem sets. 

Question 2. 

Mean raw mark 16.5. This question concerns the transfer matrix treatment of the one- 
dimensional, nearest-neighbour Ising antiferromagnet. Some parts are very standard but 
it  also  includes  challenging  sections.  These  involve  considering  spin-spin  correlation 
functions in a finite system with periodic boundary conditions and deriving differences in 
behaviour according to whether the number of sites is even or odd. Most solutions were 
reasonably good, and a few were very good (3 answers at 80% and above). 

Question 3. 

Mean raw mark 17.9. This question is concerned with fermionic Bogoliubov transfor- 
mations for a two-orbital model that is a toy version of the BCS Hamiltonian. It was done 
well or very well by nearly all candidates (4 answers at 80% and above). As expected, 
candidates  found  the  final  section  the  most  difficult.  It  required  them  to  find  the 
transformation between the original vacuum for the problem and the ground state of the 
Hamiltonian, using methods they had seen in other contexts but probably not in this 
setting. 
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Cosmology 

Question 1 was attempted by all students. Conceptually, this was the simplest question in the 
exam, as it dealt mostly with background expansion and linear Newtonian growth. It required 
a bit more work in terms of algebra,however, and some students found it hard or perhaps  
more time-consuming than expected. Most students were able to get more than half of the  
marks,with an average of 15.1/25. 

Question 2 was attempted by a majority of the students. It involved the 
derivation of the energy-momentum conservation equation for linear vector perturbations in  
Newtonian and relativistic theory. There was a moderate amount of index algebra and linear  
expansion to do, but most students were able to go through most parts of the question without 
much trouble. 

Question 3 was only attempted by 2 students. Neither of them were able to 
complete part 3 correctly, even though most of the ingredients were already provided. A  
potential hurdle may have been the derivation of the growth prefactor for ϕ˙ in the ISW  
term, although this was done in the tutorials. 
Both students had the right physical intuition, though (ISW can only be relevant during Λ 
domination), and could complete most of the question. 
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Groups and Representations 
With a raw average of 71, this paper was done well on the whole but this average hides 
uneven performance among the cohort as well as across the questions. In particular,  
questions 1 and 4 were done rather well, while performances on questions 2 and 3  
were, on average, rather poor. 

Question 1. With a raw average of 20 marks and tackled by all students, this question 

was done rather well. Most difficulties arose in part b) where some students performed 
random calculations (such as checking that P is a projector) rather than tackling the  
task at  hand  and  in  part  e),  where  some  students  had  conceptual  problems  
 applying  the previous results within the given physics context, although a similar  
example had been discussed in the lectures. This may well be related to the growing  

trend of not attending lectures but rather claiming to listen to the recordings. 

Question 2. This question was attempted by 48 students with an average raw mark of 

12.6. Major conceptual problems arose in part b) where most students had no idea  
how to determine the unbroken sub­group although this had been discussed in the 
lectures and the exercise classes. Another, surprising issue was the inability of many  
students to carry out the relatively simple Casimir/index calculations in part c)  

numerically correctly. 

Question 3. A very unpopular question attempted by only 14 students with an  

average raw mark of 7. Even though spinors were discussed at length in the lecture  
most who attempted the question struggled conceptually, despite the two­dimensional 
case being rather simple. I suspect patchy lecture attendance and the fact not many  

previous exams had a question on spinors plays a role. 

Question 4. This question was tackled by all students with a very good average raw  

mark of 21. The only major difficulties arose in part d) where the results had to be  

applied in a physics context. 
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Kinetic Theory 
Question 1. Almost all attempts were of a good standard. 

Part (a) was mostly done well, though a few candidates forgot the scalings 
f1 = Nρ1 and f2 = N(N − 1)ρ2. The interaction potential should appear 
in a sum over i < j with a strict inequality to omit self-interactions. All the 
sums should have explicit upper and lower limits. 

Part (b) was mostly done well. The main error was using ||2 instead of the 
peculiar velocity |−|2 to express the temperature in terms of f . One needs to 
take the Boltzmann–Grad limit to justify expressing the f2 contribution via 
the Boltzmann collision operator. The f (0)/τ in the BGK collision operator 
is a model for the Boltzmann gain term with the right qualitative properties. 

In part (c) several candidates left the contribution from U as an integral 
over . Integrating by parts gives = −ρ∇U with a minus sign. 

Part (d) caused most difficulty. Several candidates tried to take moments 
with respect to the peculiar velocity = −(, t) directly. This operation does 
not commute with and t derivatives, because depends on and t. It is easier
to take moments with respect to first, since , , t are independent variables, 
then convert them into moments with respect to . The moment of the ∇U 
term becomes + . This exactly cancels the contributions from evaluating 
∂t(ρ) using the momentum equation from part (c). 

Question 2.  

I did not expect this question to prove particularly challenging, 
but the marks were fairly low, mostly due to candidates finding it difficult to
perform some undergraduate-level manipulations, such as Taylor-expanding
an expression or sketching a function knowing its asymptotics. 

Part (a) — Most candidates realised that undamped waves would exist where 
f0
′ (u) = 0, but some did not spot that, besides the plateau at u ∈ [v1, v2], 

this also included u < −v0 and u > v0 + v2 − v1, where there were no 
particles. 

Part (b) — This was a completely standard calculation and most got full 
marks, as I hoped they would. 

Part (c) — Realising that all you had to do was find the zeros of the de- 
nominator inside the log (to get the log to go to infity) proved surprisingly
challenging. 

Part (d) — This part required realising that solutions would exist at u ≫ 
v0, v1, v2 and at u = v1 + δu, where δu < v2 − v1 ≪ v0, v1, and then 
expanding the log in relevant small quantities. This task defeated most 
candidates. Many did understand though that the reason the EAW did not
exist in a Maxwellian plasma was that, in the absence of a plateau, it would
be heavily damped. 
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Part (e) — This proved hard for the same reason part (d) proved hard,
but it was disappointing that few realised they could at least get points
for showing how the desired expression asymptoted to the solutions already
obtained in parts (d) and (c). 

Part (f) — Sketching correctly functions with known asymptotics proved 
harder than I hoped it would. 

Question 3.  

The range of performances was very similar to last year, ranging 
from 16/25 to 23/25. Basic bookwork manipulations were done well but
physical understanding was somewhat lacking. 

Part (a) — almost all students got both marks. 

Part (b) — this is a very standard bit of bookwork and was done well by 
everybody. 

Part (c) — simple (rather mechanical) calculation, done well by all those 
who attempted it. 

Part (d) — only one person got the mark for physical interpretation (the 
perturbation corresponds to a transient, m-armed, rotating bar or spiral
pattern). Otherwise done well. 

Part (e) — the physical reasoning was much better here than in parts (d) 
and (f), with most students giving plausible justifications for simplifying
the integral. Once this was done, the rest of the question is straightforward
algebra, although some students were clearly running out of time by this
point. 

Part (f) — perhaps a bit too hard, since nobody got either of the 2 marks 
on offer. The detailed answer is that R is a resonance function and that the
contributions from (i) and (ii) correspond to stars located at corotation and
Lindblad resonances of the rotating pattern, respectively. I’d have given at
least one mark for any sensible words in this direction, but nobody provided
any. 
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δ(f(x)) dx . (1)

In the last part most candidates did not recall that for an unstable particle
the pole of the two-point function is shifted off the real axis.

Question 3 Average mark 16.6. Some candidates seemed to be confused
between commutators and anti-commutators in part a). In parts b) and c)
some candidates tried to evaluate wave-functions rather than simply work
with the states; this was not required and obscures the argument of a proof.
A few candidates did not realise that the terms that vanish in part d) do so
because of annihilation of the Fock vacuum, not because of spinor orthogo-
nality.

Quantum Field Theory 

Overall the paper was well done. Most candidates were secure on the book- 
work aspects. The later parts of questions that required candidates to pull
together different ideas caused more difficulties. 

Question 1 Average mark 15.8. Some candidates did this question very 
well but a significant number of candidates failed to realise that there is a 
γ5 factor in the Feynman rule for the fermion-scalar vertex. Some proofs 
that the one-loop contribution to one- and three- point functions vanishes
were rather sketchy. In part d) many candidates failed to realise that for
parity to be a good symmetry the scalar field must be parity odd – they
assumed that it is even. 

Question 2 Average mark 16.8. This question was mostly well-done. A 
small number of candidates failed to realise that the U(1) transformations of
ϕ and Φ are related, and in many answers the combinatoric factors in parts
b) and c) were not consistently done. Strictly speaking (c)iii) should have 
asked for the decay mode Φ† → ϕϕ (the dagger was missing); 8 candidates 
commented on this but then did the rest of the question assuming the matrix
element was non-zero anyway. The most common error in the calculation of 
the width ΓΦ was incorrect evaluation of the δ-function integral ∫ 
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Quantum Matter 

Question 1 
All students could define Hartree Fock (almost all perfectly).The second  
part of the question asked students to convert from first to second quantized 
notation. This kind of thing shows up every single year and it should not 
have been a surprise. Nonetheless only about half managed to do this  
without error. A surprisingly large number seemed to not have any idea  
how to do it. Parts (c) and (d) should have then been easy, but errors in  
writing the Hamiltonian in the first place sometimes caused even more 
confusion in getting any reasonable result later on. I was fairly generous in
not deducting for minus signs or dropped constant factors (which in reality
might have been important). The last part could have been done even
without having done any of the earlier parts just by realizing that (i) spin
up and spin down are completely decoupled and (ii) particles with the same 
spin don’t want to be on adjacent sites. 

Question 2 
The first part of the question, BEC for particles in a 2d har- 
monic well, should have been very easy (particularly given that density of
states D(E) was given and the relevant integral was given). This is 2nd 
year stat mech material. Unfortunately, more∫than half the students either 

didn’t know where to start, or regurgitated dk/(2π)d without thinking. 
Fortunately, the rest of the problem didn’t rely on getting this part right —
although many of the students who ignored the harmonic well in this part
continued to do so in later parts and then answered things incorrectly there-
after. For example in the second part of the problem almost half didn’t pay
attention to the harmonic well. The derivation of Gross-Pitaevski was done
(mostly) correctly by most students. Errors in this part, though, caused
trouble in later parts. 
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C3.1: Algebraic Topology  

Question 1. 

1.(a) was reasonnably easy, and yet there was a surprising number of students that didn’t 
manage to answer it. 1.(b) required familiarity with the universal coefficient theorem, and 
was a good test of the students understanding. Again, it was reasonnably easy for those 
who understood that part of the course material. The fist part of 1.(c) was unexpectedly 
easy, while the second part of 1.(c) was maybe a bit too hard. 

Question 2. 2.(a) I was rather disappointed by the student’s performance in that 
question, which was suppoed to be really easy: many students completely failed the 
understand the notion of homotopy equivalence between spaces (confusing it with the 
notion of homotopy between maps). 2.(b) relied of geometric intuition, and might hav 
edisadvantaged those students whose visualisation capacity is not as strong. 2.(c) was as 
hard as I had intended it to be, meaning hard but yet doable by the strong students. 

Question 3. 3.(a) was fun to mark, and worked really well for most. 3.(b) was generally ok, 
though sometimes led to messy/confused answers. 3(c) required detailed understanding of 
how to justify the ring structure on cohomology. Most students falled short of what I 
would have liked to see, so I ended up being lenient in my way of marking that part of the 
question. A small number of students were able to provide perfect answers, which made 
me happy. 
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C3.2: Geometric Group Theory 

Question 1. Almost all candidates attempted this question. A large majority forgot 
to mention, in the enumeration of the homomorphisms required in (a), (ii), that one 
should proceed by order of word length of the images of the generators. 

In answer to question (c), (ii), many candidates attempted to prove first that the group 
satisfying the given assumption should be residually finite. This is not necessarily true, 
since, for instance, simple groups satisfy the given assumption as well. 

Question 2. This question was attempted by about half of the candidates. Part (a) was 
well answered. In part (b), where the arguments required the use of the geometry of 
actions on simplicial trees, most answers were rather approximate and not well justified. 
A clear picture would have sufficed for (b), but even that was hard to find. Part (c) 
followed from a combination of (a) and (b), but only few candidates saw this. 

Question 3. 

Parts (a) and (c), (i) and (ii), were well answered and well explained. There were few 
attempts to answer part (b), even if it was a consequence of (a), (iii), and similar 
arguments have been seen both in lectures and in classes. The candidates attempting (c), 
(iii), noted, correctly, the obstruction to a quasi-isometry between the Euclidean plane 
and a hyperbolic space, but proceeded with a use of the Morse Lemma, instead of using 
the statement proved in (b), as suggested by the hint. 
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C3.3: Differentiable Manifolds

Question 1. This was the easiest question and attempted by all students, with many
good answers. In 1(b), the ‘standard result’ the question intended was the Künneth
Theorem. My preference was for people to give the full statement, not only the isomor-
phism

⊕
i+ j=k Hi(X)⊗H j(Y) � Hk(X×Y), but also the map α⊗β 7→ Π∗X(α)∪Π∗Y(β), which

many people omitted. If people did not state this, but used it in (c) without explanation,
I deducted a mark.

Question 2. Students found the first part of (b), ‘Prove that . . . ’, difficult, and noone
answered this correctly. This was worth 6 marks, and I usually gave 3/6 for an attempt
that showed some understanding. The rest of the question was easier. For example, in
(d) you combine (b),(c) to get vol(Sn+1) = 2π

n vol(Sn−1) and then give inductive formulae
for vol(Sn) for n even or odd, which is 5 marks in the bag. Students should have been
able to abandon the first part of 2(b), go on to answer the rest of the question, and score
a high mark. But a significant proportion of students, after hitting a problem in 2(b),
then went to pieces, and missed out on easy later marks. This happened more often for
students on the MSc courses, who I guess are much less used to Oxford exam questions.

For the second part of 2(b), ‘Deduce . . . ’, a point often missed was that the deletions in
the domain and target of Φ have measure zero, so do not change the integrals. Most
people did not notice the deletions.

For 2(c), the idea is to apply Stokes’ Theorem to the given form α, and note that dα is
the volume form for S1

× Bn, and the restriction of α to the boundary S1
× S

n−1 is 1
n

times the volume form of S1
×S

n−1. I had thought that having to state Stokes’ Theorem
earlier would be enough of a hint for this. However, many students instead tried to use
the map Φ somehow, and got stuck.

Question 3. This was the least popular question. There was unfortunately a mistake in
3(b)(iii): the students were asked to prove that d2

dt2 (r2xi(t)) = 0, but in fact d2

dt2 (r−2xi(t)) = 0.
This also made it more difficult to answer 3(c) sensibly. This was dealt with in the
marking by redistributing some of the marks for 3(b)(iii),(c) to earlier parts of the
question, and giving the remaining marks as credit for a good attempt (for example, if
the students assumed that d2

dt2 (r2xi(t)) = 0 and then correctly wrote down the general
solution this implies in the second part of 3(b)(iii), I gave marks for this). Only 4 students
answered 3(b)(ii) correctly, and so were in a position to attempt 3(b)(iii). None of them
found the mistake.
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C3.4 Algebraic Geometry 

Q2 and Q3 were the most popular questions. Q1 was mostly solved correctly by the very 
few candidates who tackled it. Very few candidates managed to do Q2 (d). The point here 
is that the complement of U is the image of the set S := (v1 v2) € V x V  f(v1) = g(v2) fl 
∆V in W. The set S is closed by (b), and its image in W is closed because V x V is complete. 
In Q3, many candidates were confused by (d) (i). The point here is that one can start with 
the graph of a representative of the rational map ; this gives a subset of V x V, and in 
order to obtain the variety V, one should take the Zariski closure of this graph. Most 
candidates did not think of considering this Zariski closure. 
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C3.5 Lie Groups

Question 1. This was quite a popular question. Part (a) was standard bookwork
and well done, with very few errors. Part (b) was usually done well, with only minor
omissions in the argument on occasion. Part (c)(i) proved to be surprisingly challenging.
Not all students spotted that it was a variation on the bookwork regarding covering
maps, but those that did usually did well. Part (c)(ii), on the other hand, was done
well by almost all students. Part (d), as expected, proved to be difficult for students.
Several students spotted the links to covering maps as suggested by the question, but
not all. Quite a few students spotted the idea for part (i), but failed to show the required
condition on the differential. More students understood what was going on in part
(ii), but often struggled to give a complete argument. The most common issue was not
showing that the map needs to be surjective. Part (iii) proved to be the most difficult,
with most students giving no or wrong answers, with only few seeing the correct answer.
A common issue was that students did not know the centre of SO(4) and that they again
did not consider the condition on the differential.

Question 2. This was the most popular question, with almost all students attempting
it. Part (a) was standard bookwork and was usually done well, but marks for lost for
not saying whether objects were left-invariant vector fields or tangent vectors. Part
(b)(i) provoked a mixed response. Many students did it well or had the idea, but there
were a surprising number which, in particular, did not show that the resulting vector
field was left-invariant (i.e. they did not use the hint) or further errors (such as that f
takes the identity to the identity). Part (b)(ii) was usually done well using (b)(i). Part
(c)(i) was standard bookwork and usually done well, but there were a number of errors
in the definition. Part (c)(ii) was typically done well using (b)(ii), with the common
error being that students did not say that conjugation was a Lie group homomorphism.
Students took a variety of approaches to (d)(i). Those who chose to take the approach
suggested by the hint usually did well, only failing to argue sufficiently why it is enough
to restrict to the Jordan normal forms. Other students tried to use the lack of square
root argument with mixed success, with the typical issue being errors in computation or
incorrect choices of matrices. Students who attempted part (d)(ii) often did well, with
the only error being not to argue sufficiently why one can use the exponential map on
G by using (b)(ii) and the projection map.

Question 3. This was the least popular question, with relatively few attempts. Part (a)
was standard bookwork but there were several common errors, including remembering
the non-abelian condition and that the subgroups have to be connected in the definition
of simple Lie group. As expected, part (b) provoked a mixed response. Most students
had a fair attempt, but common errors included not saying that dexp0 = id, and arguing
why if σ(X) preserves W then exp(σ(X)) preserves W. Part (c)(i) was usually done well,
with the only errors being not to say that dAde = ad. Part (c)(ii) was done less well,
with the common error not being to consider the issue of abelian Lie groups and Lie
algebra. Determining the roots in (d)(i) was usually done well. For the second half of
(d)(i), the usual issue was again not considering the non-abelian condition or correctly
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arguing why there are no non-trivial proper ideals in su(2). Part (d)(ii) was typically
not answered or not answered correctly. Several students spotted the link to quotients
of products, but could not give a complete answer.

25



C3.11: Riemannian Geometry 

Question 1. This question was about the Levi-Civita connection,and was the most 
popular,with almost all (13) candidates attempting it. Most candidates performed well 
and there were 8 marks in the 18-25 range. The bookwork was done well, and most 
candidates were able to see how parallel transport interacted with the covariant constant 
endomorphism. The final part also had many successful attempts. 

Question 2. This question,on totally geodesic submanifolds received 8 attempts. of 
which 2 were in the 18-25 range. Showing that the fixed point locus of an involution was 
totally geodesic proved more tricky than expected, but there were some very good 
solutions. The example of an involution on complex projective space was generally well 
done. Some candidates mistakenly thought that a totally geodesic submanifold of an 
Einstein manifold was Einstein. 

Question 3. This question was the most sophisticated, dealing with Myers’s theorem and 
applications. It received 7 attempts of which 2 were in the 18-25 range. The bookwork, 
proving Myers’s Theorem, was well done. Applying the theorem proved more 
challenging. Some candidates got confused about the behaviour of Ricci curvature under 
products and thought S 1 × S 2 admitted a metric of positive Ricci because S 2 did and S 
1 was flat. However other candidates answered this correctly using Myers and the fact 
that the fundamental group was infinite. The final part, using the idea of taking a product 
with a small sphere to get positive scalar curvature,proved quite difficult, but a couple of 
candidates did this very well, showing a good understanding of scalar curvature and 
fundamental group. 
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C3.12: Low-Dimensional Topology and Knot Theory 

Question 1. This question tested knowledge of immersions, smooth manifolds, and 
Sard’s theorem. The general level of solutions was mixed. Part (a) was generally fine. 
There was no complete solution for (b)(i) (even though describing an immersion of T2 

x into R2 is not difficult) and only a few for (b)(ii). There were several essentially 
correct solutions for (b)(iii) and (b)(iv). 

Question 2. This question tested knowledge of knot theory, the knot group, the 
Wirtinger presentation, and primeness of knots. The general level of solutions was 
mixed. There were no serious issues with part (a). There were a few correct solutions for 
(b)(i), and some candidates got the key ideas right for (b)(ii) (studying the intersection 
set between the torus and the hypothetical connected sum sphere). 

Question 3. This question tested knowledge of 4-manifolds, Kirby diagrams, and the 
intersection form. The general level of solutions was mixed. Solutions for (a)(i) and (a)(ii) 
were typically correct. In (a)(iii), only a few candidates managed to show that the two forms 
are inequivalent, even though this was a Section A problem on Problem Sheet 4. There 
were several correct solutions for (b)(i), while a few for (b)(ii) and (b)(iii). 
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C5.2: Elasticity and Plasticity

Question 1. Unfortunately there was an error in the examination paper in Question 1
in which the Navier equation should have a factor of λ + µ rather than λ + 2µ. While
the extraneous factor of two does not change the methodology being examined, it made
parts (a) and (b)(i) harder than intended because it affects one of the wavespeeds in
part (a) and hence the coefficients in part (b)(i). To mitigate against the impact of the
error, minor errors and partial progress in parts (a) and (b)(i) were marked generously
using equitable marking schemes agreed in advance with the Chair. The bookwork in
part (a) was well done overall, with nearly all of the candidates deriving the intended
wavespeeds with only minor calculation errors or minor defects in the argument. Part
(b)(i) caused more difficulties for those candidates that did not make effective use of the
results of part (a) and the majority of candidates got bogged down in the algebra on the
way to the dispersion relation. The tail in part (b)(ii) was unaffected by the error and
received only a small number of attempts. The error in the question was corrected for
the past paper archive.

Question 2. The bookwork in part (a) was reasonably well done overall though there
was some confusion about the direction of the reaction force exerted by the obstacle
on the string and many candidates did not justify the integration by parts nor exploit
correctly the identity in part (a)(iii). Part (b)(i) was extremely well done, though only
a few candidates spotted how to use it to write down the answer to part (b)(ii). There
were a few good attempts at part (c), but the majority faltered in writing down the
correct version of Newton’s second law for the obstacle

Question 3. The book work in part (a) and the similar work in part (b) were well
done by all candidates, with many of them scoring full marks. In part (c) the majority
derived correctly the solution in the elastic region, but ran into difficulties applying the
associated flow rule in the plastic region in the tail of the question. While the dilatation
is spatially uniform in the elastic region, it is independent of time in the plastic region,
and hence fixed at the value laid down by the advancing elastic/plastic free boundary.
The tail was a bit too hard as set and with hindsight I should have given as a hint that
the dilatation should be assumed to be continuous at the elastic/plastic free boundary
as in the example in the online notes. This modification to the question was made for
the past paper archive.
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C5.5: Perturbation Methods 

Question 1. Part (a) was well done, whereas most candidates struggled with (b) as higher 
order terms in the expansion needed to be taken. 

Question 2. Part (a) was mostly answered well, though some candidates lost marks for 
not stating the distinguished limits. Part (b) was mostly answered relatively well. In part 
(c) many candidates lost marks by not spotting the conditions on the solutions at the 
various orders. 

Question 3. Most candidates provided good solutions to part (a) and part (b) and many, 
sensibly used the results from (b) to make progress in the early parts of (c). The majority 
of marks were lost in computing the conditions on a in part (c). 
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C5.6: Applied Complex Variables

Question 1. This was the most popular question, attempted by 88% of candidates. Most
answers were good. In part (a) some points were lost by not justifying the sketches of
the regions. In particular a number of candidates did not state that v = 0 on AB and
DE, or that |w′| = 1 on BC. There was some confusion over the labelling of the points.
In part (d) the step some candidates found tricky was using double-angle formulae to
convert cosθ tanθ/2 to sinθ − tanθ/2.

Question 2. This was the least popular question, attempted by 40% of candidates.
Parts (a) and (b) were handled very well, with some good answers. Part (c) was also
handled well, despite being less familiar. Surprisingly, there were no good answers to
part (d). No candidate thought to use the results of part (b) to solve the singular integral
equation, despite many casting it in that form using the hint.

Question 3. This was a popular question, attempted by 76% of candidates, and had
the highest average mark. The material was challenging, but the format of the question
was familiar, and there were some very good answers. The most common difficulty
was candidates failing to realise that∫

∞

−∞

e−ikx f (k) dk

is 2π times the inverse Fourier transform of f , so that taking the Fourier transform gives
simply 2π f .
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C5.7: Topics in Fluid Mechanics 

Question 1 was very popular, with all candidates starting the question and essentially all 
making a concerted attempt. It produced a wide spread of marks and, overall, the question 
was implemented well. While not in the markscheme, the possibility of a singularity near 
 = 0 escaped the attention of most candidates, though never to the detriment of progress 
in the question. 

All candidates made a concerted attempt at Question 2 and the question was answered 
well on the whole. The final stage of the final part of the question was hindered by an 
incomplete specification of the physics required to simplify the boundary conditions. 
Consequently, the marking took this into account for those candidates that reached this 
stage of the question. 

Question 3 was not popular, and only ever considered when Question 1 was attempted 
without much progress. This may explain the low marks achieved for this question in the 
very small number of attempts 
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C5.11: Mathematical Geoscience 

Question 1. This question was reasonably popular and was done quite well, especially 
the physical interpretation. The last part was quite challenging, and a number of 
candidates drew various speculative curves based on things that had been seen in lectures 
without carefully working out the bifurcation diagram. But a few candidates gave almost 
complete answers. It was surprising how many candidates didn’t seem to know what a 
graph of tanh(x) looks like, or seemed to have to go to great lengths to work this out, 
and this hampered progress from early on for some. 

Question 2. This was the most popular question, but the construction of the charac-
teristic diagrams proved to be quite challenging. The first part was done fine by most 
candidates. A common difficulty in part (b) was not being clear about which initial data 
were being used for the characteristics at which stage - the answers often became a 
sprawling assortment of characteristics that applied in overlapping regions. This was not 
helped by the fact that many people drew their characteristic diagram the wrong way 
round, or kept flipping their axes. Quite a few people made more progress with part (c), 
realising that the characteristics simply split into those on which c = 0 and those on which 
c = 1, but most candidates then had difficulty tracing those characteristics clear due to the 
incomplete or confused answers for h in part (b). 

Question 3. This question was slightly less popular but was generally done quite well by 
those that attempted it. The first part was found fairly straightforward. Solving the quasi 
steady model in part (b) was also generally done well, and it was pleasing to see many 
candidates utilising the solution to correctly interpret the timing of ice thickness 
maxima/minima in terms of seasons (Spring/Autumn). Part (c) was also generally done 
well, with many candidates realising the utility of characteristics in a setting they hadn’t 
previously seen. The last part about the net production was however harder, with many 
candidates thinking about the time-integral of h itself rather than the growth rate. 
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C6.1: Numerical Linear Algebra

Question 1. Q1 was quite popoular. Some candidates worked out the least-squares
solution via the QR factorisation. This is fine, but some then failed to note that A = QR
yields A = Q and R = I. (iii) Many used insufficient arguments to justify the V factor in
the SVD of A1 and A2 are the same. Q1(b) Stability appears to always be challenging
for many. The key point here is to see that a small backward error would immediately
imply small error in the singular values, by Weyl’s theorem. This by contrast does not
hold for eigenvalues of nonsymmetric matrices (b-iv).

Question 2. Q2 was the most popular question. The final question was essentially
bookwork (given in lecture notes and lecture), but unsurprisingly not many got to the
end. Part (b-iv) also seemed challenging to most. There was a typo in the definition of the

Frobenius norm ∥A∥F =
√∑

i, j |Ai, j|2 in Q2, where the square root was missing. Almost
all candidates used the correct definition in their scripts. Where a few candidates used
the incorrect/printed definition ∥A∥F =

∑
i, j |Ai, j|

2, full mark was awarded if the argument
was otherwise correct.

Question 3. Q3 was somewhat less popular, but was still attempted by about half of the
candidates, and had a slightly higher average mark. (iii) was done with a good success
rate, which was a pleasant surprise. Perhaps (b-iv) was not difficult for a final problem,
and the other problems are bookwork or a slight variant.

33



C7.4: Introduction to Quantum Information 

Question 1. Was generally well answered by those who chose it, and the mistakes 

seemed to be very similar amongst most students. Quite a few students struggled with 

the very last part of part (b), and claimed that the rank was always 2. In part (c), many s

tudents only got 2 marks due to only showing one direction of the if and only if statem

ent, and there were quite a lot of circular arguments. Part (d) was generally very well do

ne. Parts (e) and (f) seemed to be the source of some confusion (perhaps the  
wording could have been improved), with many students not actually writing down  
what the constituent states |ψ

1
 and |ψ

2 
were but instead merely noting that the output  

states were indeed separable. However, quite a few students successfully gave the  
answer to part (f) in part (e) anyway. Finally, part (g) was surprisingly well answered by 

many students, with almost all who attempted it gaining at least 3 or 4 points. 

Question 2. Contained a typo in the second equation defining decoherence, but it  
could at most have affected parts (b) and (c). The remainder of the question could still 

be answered using the expression given in part (c). Most students were able to  
self-correct the typo, as this part of the question was very similar to material covered  
in class. (The irony is that this question focuses on error correction.) 

Out of the 20 students who attempted Question 2, six were, to varying degrees,  
affected by the typo, as reflected in their scripts. For these students, parts (b) and (c)  
were marked based on the method used, which is independent of the typo. This turned 

out to be a sufficient adjustment, counteracting the effect of the typo and enabling  
affected candidates to perform similarly on Q2 to those who were unaffected. Their 
performance on Q2 was also on par with that on the other questions. 

Otherwise, almost all students answered part (a) correctly. Parts (d), (f), and (g) were  
also generally well done. However, many students struggled with part (e), failing even  
to complete  the  first  step  —  namely,  substituting  the  given  expression  for  v  into  
the probability of obtaining (0 0) — and consequently scored almost no marks.  
A more explicit statement that t represents the interaction time might have helped. On 

the other hand, those students (around seven) who had a good physical understanding 

of the context were able to score nearly full marks on these questions. 

Statistically,  this  question  does  not  stand  out;  the  average  marks  for  Q2  are 

comparable to those of the other two questions. 

Question 3. Was of medium difficulty. Most students had no problems with parts (a), 

(c), (d), and (f). Part (b), which required a geometric visualisation of the three  
elementary operations  on  a  single qubit,  was  generally  well  answered,  although   
describing  the Hadamard  gate  in  geometric  terms  proved  surprisingly  challenging  
for  some.  A significant number of students struggled with part (e). Those who  
answered correctly often did so in a rather pedestrian way, by exhaustively considering 

the four possible ways of encrypting and decrypting the state. The final two parts, (g) a

nd (h), proved difficult for all who attempted them. In part (g), most students  
recognised that the T gate is not a Clifford gate, but only a few were able to explain the 

origin of the 50% 
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success rate. No one provided a fully satisfactory answer to part (h), which required 
the observation that in the first round, the T and T † gates are equally likely to be  
implemented, and that the T gate can be recovered from the T † gate by composing it 
with the S gate (a Clifford gate). The textbook-style parts of this question were, by  
and large, well done. However,  the  remaining  parts,  which  required  a  more  
creative  approach,  proved challenging, with only a handful of students offering  
partial answers. 
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C7.5: General Relativity I

Question 1.

This question was attempted by every student and was the question most similar to
previous exam questions.

In general people picked up full marks for parts a(i) and a(ii) being simple definitions.
On the whole a(iii) was also very well done, with only a few students not getting
maximum points for it. Part a(iv) was mostly well done too however a handful of
students did not explain why they could strip off the vector field. Some also confused
the transformation of a vector field here.

Part b was not as well done and weaker students lost their marks here generally. For
b(i) number of students did not give the correct definition of normal coordinates, either
writing only that the connection coefficients vanished or only that the metric looked
like flat space. Some did not explain that the normal coordinates were valid at a point
making it seem that they could be valid everywhere. b(ii) generally separated the
stronger from the weaker students. If the students managed to correctly explain normal
coordinates they typically picked up most marks for this part. However a large number
of students did not state that they had worked in normal coordinates but because this is
a tensorial equation it is valid in all coordinate systems and therefore holds in general,
this lost them a mark. For the weaker students they did not realise that derivatives of the
Christoffel symbols were non-zero and so ended up with the left-hand side vanishing.
They typically justified this by saying that the right-hand side also vanishes, however
neither of these statements is true. Most who attempted part b(iii) got most of the marks
on offer. Some students used normal coordinates to erroneously argue that the Riemann
tensor terms vanished and hence it was obvious.

Question 2.

The second most popular question and the one with the highest average mark. Most
received all four marks for stating Birkhoff’s theorem correctly and explaining that it
means that the Schwarzschild solution is the solution outside any spherically symmetric
distribution of matter (in a vacuum). Those that lost marks here left out one or more of
the adjectives in Birkhoff’s theorem.

Part b was almost universally well done. Almost everyone correctly obtained the three
conserved quantities for part b(i). For b(ii) those that lost marks did not explain why
one could choose the correct initial conditions or just stated θ = π/2. Most did well
here. The strictly illegal method of differentiating the Lagrangian was the most popular
method and was accepted even without comment about issues at ṙ = 0. Some used this
method but did not differentiate both sides with respect to τ and therefore ended up
with ṙ terms remaining.

In general most said r̈ = 0 for a circular orbit. Surprisingly, having stated this, a large
number of students then went back to looking at the Lagrangian, finding an expression
for ṙ2+Veff = E2 and then finding the minima of Veff. This is of course correct but meant
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they spent extra time rather than using part b(iii). If the result for h(r) was incorrect
before propagated errors because of this were ignored and marks were awarded for
correctly finding the roots for their h(r). For c(ii) those that went back to computing
ṙ2 suffered a bit because it was not obvious how to simplify things as easily, though
most did in the end. Students lost marks because they only looked at the stable orbit,
neglecting to mention anything about the other orbit. Others instead correctly gave
the conditions for when the orbits would be stable and unstable but then did not make
contact with the location of the orbits computed in c(i).

This was the hardest part of the question. If c(iii) was done correctly then most did c(iv)
correctly too. One common issue was trying to go from the period of the orbit to the
proper time for the period by using the constrained Lagrangian, setting ϕ̇ = 0 to get dt
in terms of dτ. This was wrong since dϕ , 0. Others gave a result still in terms of the
Energy or Angular momentum when the question asked for it in terms of the root and
the mass M.

Question 3.

The least popular question though still a healthy number of attempts. Parts a (i) and a(ii)
were almost always done satisfactorily, though a few forgot the definition of an integral
curve. a (iii) when attempted was done well. Some just stated that the Lie derivative
measures the failure of the flow to commute rather than doing any computations.

Those that persevered through the part a typically did well with part b. b (i) was a
free mark and part b (ii) though a bit fiddly was done well. For part b(iii) the use of
integration by parts was done poorly. Given that there is a connection rather than a
partial derivative a little more care is needed to use integration by parts and this was
almost always ignored losing a mark.
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C7.6: General Relativity II 

Question 1. This was only attempted by one student who did very well in the question. 
Despite seeming intimidating the question is actually quite simple. Part a is bookwork 
which was given in class. Though part b looks like it gets nasty as you progress and the 
polarisation in the hint looks intimidating there is only one term that contributes and so 
it all truncates. Part c was well done with full marks obtained. 

Question 2. Everyone but 1 student did this question. a (i) was correctly done by 
everyone, but interpreting the horizons was not as well done as expected. For a (iii) many 
got the idea behind the change of coordinates but could not do the integral. For the 
most part the Killing horizon was defined correctly though a few students did not say 
null. For part a (v) some students only showed it was null and did not discuss it being a 
Killing vector. Others did not use the change of coordinates they had found in a(iii) so 
they obtained a dual vector which was not Killing and ended up confused. b (i) was done 
well by almost everyone. b(ii) was on the whole correct however a small minority set L 
= 1 and then solved rather than gµx µx = 1. This lead to an additional term in their result. 
b (iii) had been seen in a similar form in tutorials however it was rather polarising. Some 
students were able to get full marks, others got stuck in the logic of the question and 
scored only 1 mark. 

Question 3. The most popular question. On the whole people picked up the most points 
from part a. For a (iii) you were guided in how to do it by your computations in a (ii) but 
some used another method which was fine but took longer. The metric is very similar to 
Schwarzschild with t and r interchanged. Despite this, it caused students quite a few 
problems. For b (i) a few students fell for making r (0, ) rather than the correct range r (, 
). The bookwork part in b(ii) was well done. A few struggled to perform the change of 
coordinates in b (iii). Rather than defining a new time coordinate they tried to define a 
new radial coordinate like a tortoise coordinate. They ended up trying to solve an 
impossible equation. b(iv) was done well by stronger students and middle range students 
picked up a few marks. The Kruskal like coordinates are the same as the ones from 
Schwarzschild studied extensively in lectures one just needs to replace t and r. There were 
a large number of different Penrose diagrams produced. A few managed to get the correct 
answer, some even noted that it was a 90 degree rotation of Schwarzschild. If the students 
did the steps correctly, or outlined the correct steps, despite not drawing the correct 
diagram they still picked up 2 or 3 marks. If the diagram was wrong but labelled correctly 
students got 1 mark for this. 
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C7.7: Random Matrix Theory 

Question 1 was well done in general and attempted by most students. Part (a) involved 
mostly bookwork on the GOE ensemble and Wick’s theorem. For Part (b) most 
students got (i) right using the symmetry. For (ii), few saw that Wick’s can be applied 
easily and that the dominant term come from the non-crossing partitions. For (c), many 
students were too brief in explaining that the matrix is non-negative definite. For the 
moments, few students were able to compute the third moments using Wick’s and the 
fact that non-crossing partitions are dominant. Some used the general formula from the 
Marchenko-Pastur which is acceptable but not as straightforward. Question 2 was also 
attempted by most students. It involves the particular case of a 3 × 3 GUE matrix. Part 
(a) involves bookwork. To derive the orthogonal polynomials, some students relied on 
the general formula which was not necessary as they can be computed from scratch. 
This was acceptable. Part (b) was well done but few students mentioned that only the 
first two correlation functions are non-trivial as there are 3 eigenvalues. For part c, (i) 
was easy bookwork. Very few students were able to get full marks on part (ii) even 
though the function was given in Part (ii). Question 3 was attempted by few students 
(around 10). It involves Dyson Brownian which was covered in lectures and in revisions. 
From those who attempted, around half got the SDE right in (b). Only one student 
understood that the convergence in part c is related to the stationary uniform distribution 
discussed in (a). Only two students got full marks in (d) even though it was a question 
that appeared in problem sheets. 
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E. Comments on performance of identifiable individuals 

Prizes 

Prizes were awarded to the following candidates: 

Aryaman Babbar (St Edmund Hall)  
Yaprak Onder (Lincoln College)  
Samuel Bates (Wadham College) 

Mitigating Circumstances Notices to Examiners 
The Examiners received 17 applications regarding mitigating circumstances.  
The Examiners considered the applications carefully and agreed appropriate action.
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