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Part I

A. STATISTICS

• Numbers and percentages in each class.

Numbers
2024 2023 2022 2021 2020 2019 2018 2017

Distinction 53 37 38 42 42 40 25 31
Merit 13 7 13 10 9 6 n/a n/a
Pass 14 9 11 12 3 6 17 10
Fail 6 4 1 3 1 1 0 0

Percentages %
2024 2023 2022 2021 2020 2019 2018 2017

Distinction 62 65 60 63 76 76 60 76
Merit 15 12 20 15 17 11 n/a n/a
Pass 16 16 17 18 5 11 40 24
Fail 7 7 2 4 2 0 0 0

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
As in previous years there were no vivas conducted.

• Marking of scripts.
All dissertations and two mini-project subjects were double-marked. In cases of
significant disagreement between marks, the two markers were consulted to agree
a reconciled mark.

All written examinations and take-home exams were single-marked according to
checked model solutions and a pre-defined marking scheme. A comprehensive
independent checking procedure was followed.
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B. New examining methods and procedures

None.

C. Changes in examining methods and procedures currently under discussion
or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 16th October 2023 (first notice), 28th November
2023 (second notice), 9th April 2023 (third notice), and 24th May 2024 (fourth notice).

The examination conventions for the 2023-2024 academic year are online at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

Removed from public version

B. Breakdown of the results by gender

Removed from public version
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C. Detailed numbers on candidates’ performance in each part of the examina-
tion

The number of candidates taking each paper is shown in Table 2 and in the Average
USM per Formal Assessment graph below. In accordance with University guidelines,
statistics are not given for papers where the number of candidates was five or fewer.

Paper Number of Avg StDev
Candidates USM USM

Advanced Fluid Dynamics 6 65 19.8
Advanced Philosophy of Physics - - -
Advanced Quantum Field Theory 56 70 16.5
Advanced Quantum Theory 27 72 14.0
Algebraic Geometry - - -
Algebraic Topology 2 - -
Analytic Number Theory 1 - -
Applied Complex Variables 7 69 13.7
Collisionless Plasma Physics 9 64 20.4
Differentiable Manifolds 13 65 20.1
Dissertation (single unit) 19 76 -
Dissertation (double unit) 34 80 -
General Relativity I 51 64 13.6
General Relativity II 34 63 16.2
Geometric Group Theory 2 - -
Geophysical Fluid Dynamics 1 - -
Groups and Representations 61 80 15.17
Introduction to Quantum Information 37 72 17.3
Kinetic Theory 5 61 22.4
Low-Dimensional Topopology and Knot Theory - - -
Networks 9 69 6.7
Numerical Linear Algebra 5 72 13.4
Perturbation Methods 21 58 11.8
Quantum Field Theory 79 67 15.0
Radiative Processes and High Eng. Astro. 2 - -
Random Matrix Theory 15 64 15.3
Riemannian Geometry 4 - -
String Theory I 45 73 4.5

Table 2: Statistics for individual papers
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The number of candidates taking each homework-completion course is shown in Table
3. In accordance with University guidelines, statistics are not given for papers where
the number of candidates was five or fewer.

Paper Number of Percentage
Candidates completing course

Advanced Fluid Dynamics 1 -
Advanced Philosophy of Physics 3 -
Advanced Topics in Plasma Physics - -
An Introduction to Topological Phases of Matter 14 100
Collisionless Plasma Physics - -
Collisional Plasma Physics 1 -
Conformal Field Theory 32 100
Cosmology 23 100
Galactic and Planetary Dynamics 8 87.5
Group and Representations 60 98.3
High Energy Density Plasma Physics 2 -
Kinetic Theory 9 100
Nonequilibrium Statistical Physics 8 100
Quantum Field Theory in Curved Space 30 100
Quantum Matter 18 100
Quantum Processes in Hot Plasma 4 -
Renormalisation Group 8 100
Statistical Mechanics and Computer Algorithms 23 100
String Theory II 8 100
Supersymmetry and Supergravity 26 100
The Standard Model and Beyond I 13 92.3
The Standard Model and Beyond II 8 100
Topics in Soft and Accretion Matter Physics - -
Topological Quantum Theory - -

Table 3: Numbers taking each homework completion course
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D. Assessors’ comments on sections and on individual questions

Advanced Fluid Dynamics

Question 1.

Most students performed at Merit or Distinction level on this question.

All students scored perfect marks on the simplest part (a).

Parts (b) and (c) proved more difficult than expected, particularly part (b) which was
a simple derivation of a classic result from dynamics. Most candidates failed to notice
that moving into a frame rotating with a fluid results in the fluid being at rest in that
frame. This lead to numerous attempts which would have been correct had u⃗ = 0⃗ been
applied. This mistake propagated into the more difficult part (c). The key to part (c)
was to note that force balance (part b) requires ∇⃗Φ = Ω2(R)RR̂, which can be used in the
displaced force balance equation to relate all quantities to the rate of rotation Ω(R)

|∆ f | = | fgravity − frotation| = ρ|Ω
2(R + ξR)(R + ξR) −Ω2(R)(R + ξR)|

which leads to the desired result upon expansion.

Parts (d) and (e) were well answered by those candidates who made attempts. Part (d)
was covered in the lectures and was perfectly answered by nearly all candidates. Part (e)
proved more difficult, although all candidates seemed clear on the required approach.
Errors in part (b) resurfaced, and the lack of zero mean flow u⃗ = 0⃗ hampered many
candidates attempts. Candidates clearly knew how to derive dispersion relationships,
and the criteria which must be satisfied for stability (or lack thereof). Most mistakes in
this final section were of a technical nature, and the physical intuition of the candidates
appeared to be correct.

Question 2.

Most candidates performed at merit level or better on this question. Almost all can-
didates achieved full marks for parts (a) and (b). It is easiest to show that the viscous
dissipation in a Newtonian fluid is non-negative by writing Φ = 2µe : e using the
symmetric strain rate e. The velocity gradient ∇u is stated to be uniform at the start of
the question, so there is no need for a Taylor expansion in part (b).

Part (c) caused more difficulty than expected. The viscous dissipation due to the motion
of a rigid particle in Stokes flow, like the drag force, is a function of the particle’s velocity
relative to the fluid around it. More precisely, it is minus the dot product between the Stokes
drag force on the particle and the velocity of the particle relative to the surrounding
fluid many diameters from the particle. This leads to the given expression proportional
to |Ṙ − R · ∇u|2.

One can see this by applying the result in part (a) to the Stokes flow outside a rigid
particle. The left-hand side vanishes as the d/dt term is negligible. The right-hand
side becomes invariant under Galilean transformations as ∇ · σ = 0 in the fluid. The
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viscous dissipation in the fluid outside the particle is then equal to an integral over the
surface of the particle plus an integral over a surface at infinity. The latter vanishes in
the frame in which the fluid velocity many diameters from the particle tends to zero.
This argument assumes that the background velocity is approximately uniform over
many particle diameters, or equivalently finds the dissipation due to the motion of the
particle, rather than the dissipation due to ∇u. The integrated viscous dissipation for
each particle is then ϕi = ζ|ṙi − ri · ∇u|2, and their sum is ϕ1 + ϕ2 =

1
2ζ|Ṙ − R · ∇u|2 as in

the question.

For part (d), the expected approach uses the given equation (⋆) for Ṙ once to write

1
2
ζ
∣∣∣Ṙ − R · ∇u

∣∣∣2 = −(Ṙ − R · ∇u) · (HR + kT∇R logψ).

This contains one instance of∇R logψ = ∇R logΨ so applying ⟨⟨· · · ⟩⟩ gives an expression
that is linear inΨ,〈〈1

2
ζ
∣∣∣Ṙ − R · ∇u

∣∣∣2〉〉 = −" (Ṙ − R · ∇u) · (HRΨ+ kT∇RΨ)dṘdR.

The contribution proportional to Ṙ vanishes because the distributionΨ(R, Ṙ, t) is sym-
metrical about Ṙ = 0, leaving〈〈1

2
ζ
∣∣∣Ṙ − R · ∇u

∣∣∣2〉〉 = nH
∫

RiR j∂u j/∂xiψdR + nkT
∫

Ri∂u j/∂xi∂ψ/∂R jdR,

= nHC ji∂u j/∂xi − nkT
∫
∂u j/∂xi∂Ri/∂R jψdR = nHC : ∇u,

as C is symmetric, and (∂u j/∂xi)(∂Ri/∂R j) = (∂u j/∂xi)δi j = ∇ ·u = 0 in an incompressible
fluid.

Most candidates did not use (⋆) at all, and so arrived at a more complicated expression
involving C that would simply using the evolution equation for C in part (b). This
approach received substantial partial marks.

The viscous dissipation is equal to σ : ∇u, where σ = nHC is the stress due to the
bead-spring pairs as seen in lectures. This matches the general result derived in part
(a).
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Advanced Quantum Field Theory

The exam average grade was 51.8 out of 75. Most students made substantive progress
on all 3 questions.

Question 1 was on the Dirac Lagrangian. The average mark was 15.9 out of 25. A
number of students were sloppy on the logic of the derivation of Noether’s theorem.
Very few students correctly identified the symmetries in the last parts of the question,
and the appropriate Noether currents for them.

Question 2 was on Quantum Electrodynamics. This was a high scoring question with
an average of 18.2 out of 25. A few students stumbled at the ordering within the trace
in the Feynman rules, and a few others did not use the hint in part (c), carrying out a
longer calculation. Many students did not give a clean argument for the finiteness of
the 4-point amplitude.

Question 3 was on non-Abelian gauge theory. The mean mark was 17.7 out of 25.
Most students were able to write down the diagrams and amplitudes correctly. The
diagrams were sometimes incompletely labeled, leading to errors in the amplitude. A
few students got lost in algebra to prove (d).
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Advanced Quantum Theory

Question 1. This question concerns the imaginary time propagator for the quantum
harmonic oscillator. It was done moderately well (10/27 answers at or above the default
Distinction level, and 6/27 answers below the default Pass level). The best answers were
perfect or near-perfect. Weak candidates were unable to derive in a convincing way the
expression for the action of the saddle-point path that was given in the question, and
a few could not derive the correct Euler-Lagrange equation for the saddle-point path,
although even these were able to pick up a few marks later in the question.

Question 2. This question concerns the Bogoliubov theory for a weakly interacting
gas of bosons at zero temperature. It was done quite well (19/27 answers at or above
the default Distinction level, and 2/27 answers at the default Pass level; none lower
than that). Almost all candidates had a reasonable understanding of the essentials
but weaker candidates could not derive the expression given in the question for the
expectation value of the Hamiltonian in the trial state. No candidates really explained
why correlations between bosons in the Bogoliubov state lower this expectation value.
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Collisionless Plasma Physics

Q1 and Q2 examined the HT part of the course that deals with plasma waves. On
average, students got about 2/3 of the points in both questions, with only one outlier
who got only 30%. With one exception, the points awarded for these two questions
correlate quite well for each individual student, suggesting that both problems were of
comparable difficulty.

The first two parts of Q1 were bookwork; still, most students managed to lose a mark
or two by failing to point out obvious approximations that they are making or the
fact that Ωe is defined to be positive by convention (as stated during lectures). Most
students realised (correctly) that solving Q1(e) requires solving a quartic polynomial,
whose solutions were essentially given (the cutoffs and resonance points mentioned in
the problem statement). I was surprised to see that, in Q1(f), nobody noticed that, for
non-electrostatic waves, the cold-plasma dispersion relation is well defined only if n2 is
a real number (this is shown in the lectures and is in the lecture notes). Thus, k2 must
be real for the WKB scheme as discussed in the lectures to make sense. Q1(g) required
the students to reason physically about what’s going to happen in a situation that was
new to them (or at least was not discussed in the lectures). It was nice to see that nearly
half of the candidates figured it out.

Nobody figured out the answer to the last question posed in Q2(b), viz., (14) is not valid
near the cutoff points as the approximations under which it is derived break down;
(7)–(9) are still valid for any ξ (away from a resonance). A few students made simple
errors/typos in (c) and (d) which were certainly the easier parts of Q2.

Q3 was on the longish side in terms of formal calculations, but those were mostly of
standard flavour and could have been easily generalised from the lecture notes, which,
as well as ample time to peruse them, were availble with this take-home exam. The
candidates’ marks covered a broad range, providing clear proof of principle that it was
within an MTP student’s abilities to achieve near perfection in this exam, but it was
also within his/her abilities to achieve very little indeed. It seems, therefore, that the
question worked well as an exam question.

(a) A surprising number of candidates did not realise that this was a prompt to use the
electron drift-kinetic equation to derive the Boltzmann response for the electrons and
then use quasineutrality to relate φ and δ fi: several of them just wrote the perturbed
ion equation and derived the linear relationship between δ fi and φ. I did not penalise
them for that as perhaps there was indeed ambiguity in the phrasing of the question as
to what was required—although those who did not think of quasineutrality or electrons
at all found themselves in some difficulty later on as they could not close the equations
and derive a proper dispersion relation.

(b) All knew to take moments and most managed to do it successfully (although some
discovered that care—and some adjustments—were required in copying results from
lecture notes: e.g., when differentiating f0 with respect to v∥, one had to remember that
the Maxwellian was now with respect to v∥ − u0).
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(c) Fourier-transforming and finding a quadratic dispersion relation from two coupled
linear PDEs proved firmly within our students’ abilities, except for those who did not
realise that quasineutrality and Boltzmann electrons were required to relate δni toφ. No
one spotted that the PVG mode was a destablised sound wave, but they mostly could
see how the instability loop worked.

(d) This was a longish calculation, but exactly analogous to what was done in the lecture
notes. A fair number of candidates saw that and did it well.

(e) Most understood that the fluid limit meant ζ ≫ 1, but not all of them realised that
Z(ζ) needed expanding to two leading orders. Those who did, successfully recovered
the fluid result, and most of them also understood why pressure was negligible (δ fi was
approximately odd in v∥ − u0 in this limit) and why the fluid limit took one correctly all
the way to the maximum growth rate only for cold ions (ζ ∼ τ̄−1/2 at this maximum).

(f) Again, most knew how to get the stability boundary (assume real ζ), and most of
those managed to derive the required formula from that (some showed 21st-century
acumen and used Mathematica, which is fine by me).

(g) Getting to the required condition of instabilty from the result of (f) was not much of
a challenge (just making the argument of the square root positive), but the sketching of
growth rates proved the most difficult part of the question. Few understood clearly that
one had to classify all cases into ηi > 2 and ηi < 2 as well as ηu > 0 and ηu < 0, and even
fewer worked out what the sketches should look like in each case. This was somewhat
surprising as plotting the solutions via Mathematica (or equivalent) could have given
them the answers to rationalise.

Geophysical Fluid Dynamics

Q1. This was a popular question which was done reasonably well; the average mark
was pulled down by a few very brief attempts. Overall, most marks were lost by not
fully attempting the interpretation parts of the question. Other common mistakes were
not considering or discussing the +/- options for omega in part b, and failing to find
that u is proportional to h in part c. Part d was generally done very well, and several
students made reasonable points in part e and got 1-2 marks.
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Groups and Representations

A few exceptions aside, students completed this paper to a very high standard and
demonstrated that they have absorbed the relevant material.

Question 1 This was a question on the finite group S3 and its representations and a
final application to a scalar field potential. It was attempted by all students and with
an average performance of 20.0 marks. Most problems arose in the final part of the
question where some students embarked on long calculations when they should have
simply applied the results from the previous parts.

Question 2 This question was on the group SU(4) and its properties with a final appli-
cation to a quark model of mesons. It was attempted by all students with an average of
19.7 marks. A common problem in part b) was that some students simply used Dynkin
formalism rather than calculate the weights of the standard unit vectors, as instructed.

Question 3 A very unpopular question, properly attempted by only one student.

Question 4 A question on unitary groups and SU(6) in particular, with a final application
to a grand unified model. This was attempted by all students with an average mark of
20.5. Some problems arose in part b), mainly because arguments for surjectivity of the
map and the form of its kernel were not conclusive.
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Kinetic Theory

Question 1

Most candidates obtained full marks on parts (a) and (b). A few candidates derived the
full BBGKY hierarchy rather than the slightly simpler special case with s = 1 that was
asked for. Both approaches received full marks. The only real issue was remembering
that ∂ϕ(|x1 − x j|)/∂xi for j , 2 gives two nonzero terms, one with i = 1 and one with
i = j. The latter becomes part of an exact divergence.

Most candidates completed the first part of (c), but made little further progress. It is
best approached by verifying the given expression for the pressure tensor. Calculating
its divergence with the aid of the first result ∂n2/∂s = R · ∂n2/∂x gives

∂
∂xi

Pϕi j = −
1
2

∫
dR

R j

R
dϕ
dR

∫ 1

0
ds

∂
∂s

n2(x + (s − 1)R, x + sR, t),

= −

∫
dR

R j

R
dϕ
dR

n2(x, x + R, t),

using the symmetry n2(x, xs, t) = n2(xs, x, t) for indistinguishable particles. Finally, put
xs = x + R and use the chain rule for dϕ/dR with R = |xs − x|.

Only one candidate completed part (d). The system is spatially uniform and isotropic,
so ρ is spatially uniform, n2(x, xs, t) = ρ2g2(R) is spherically symmetric, and the fluid
velocity u = 0. The tensor Pϕi j = pϕδi j is isotropic. Taking the trace of the given expression

for Pϕi j determines pϕ.

The pressure p is larger than ρθ for a repulsive potential. The integral is negative as
g2(R) ≥ 0 by definition. The trace of the pressure tensor differs from ρθ because this
kinetic equation is not the Boltzmann equation. The right-hand side of the evolution
equation for f in (a) does not conserve the 1-particle kinetic energy.

Question 3

There was a broader range of marks on this question compared to previous years (from
10/25 to 22/25) despite only five students taking the exam. The average mark was 17 /
25, which suggests the question was set at about the right level of difficulty.

Part (a) — everyone knew why angle-action variables are important, but a few people
failed to write down the collisionless Boltzmann equation correctly, losing an easy mark.
Strangely this did not affect anyone’s answer to part (b).

Part (b) — all done perfectly.

Part (c) — essentially done perfectly by those who attempted it.

Part (d) — largely done very well (marks ranging from 6/9 to 9/9). Those who dropped
marks usually did so because they (i) did not give a convincing answer about ana-
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lytic continuation via Landau’s prescription (sometimes confusing this with the inverse
Laplace transform) or (ii) did not interpret zeroes of ϵ as Landau modes (I also accepted
‘eigenmodes’, ‘growing/decaying modes’, etc.), or both (i) & (ii).

Part (e) — much less well done. Probably the easiest solution is to write down the
density of the particle as a delta function in real space and then Fourier transform and
multiply by −4πG/k2. This was done perfectly by one candidate. Others clearly had
the right idea but struggled with the details.

Parf (f) — variable answers, much like in part (e). Some candidates seemed to think
that a lot of mathematical manipulations were required, but in truth one just needs to
note that the external potential has a pole at ω = k · vp, from which the answer follows
in a line or two. Nobody interpreted the final result particularly clearly. On the other
hand, it was gratifying that several students knew this result was valid after only a time
t≫ |Imω|−1, something often misunderstood in the literature!
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Quantum Field Theory

The paper was generally well done although candidates often lost marks by lazy im-
precise algebra, and some failed to address the question actually asked.

1. Q1 average mark 16.1. Some candidates did not manage to make the transition from
the free field assumed in the first three parts to the general interacting field of the last
two parts. Finding the state |ψi in part e) defeated all but the strongest candidates.

2. Q2 average mark 16.9. Some candidates tried to prove the properties of the projection
operator in part b) by using memorised explicit representations of spinors which is not
what was asked. Only a few candidates realised that the crossing symmetry in fermion-
antifermion scattering could be used to restrict the form of the interference term between
t and s channel graphs in part d).

3. Q3 average mark 15.7. The first two parts were bookwork and very well done. In
part c) many candidates produce a great deal of superfluous information by trying to
analyse individual divergent graphs – they were asked simply to list the superficially
divergent correlation functions. The last part was poorly done.
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Radiative Processes and High Energy Astrophysics

The following comments reflect the performance of all students who took the full C1
paper and the shorter paper for the MMathPhys students which was only these three
questions

Q1. The majority of students answered this well. (a) and (b) were fairly standard
recall questions from taught material and the broad idea of shock acceleration was
demonstrated by most. In (c) the aspect of Roche Lobe overflow was understood, and
the potential for stellar wind accretion was mentioned by a minority. Students found (d)
and (e) quite straightforward but the simple calculation following in (f) was surprisingly
not completed by many.

Q2. Students tended to lose marks across all of parts (a) to (e). A significant num-
ber didn’t pause for thought to sketch the function correctly and consider what they
were plotting, which should have been straightforward. But the integral in (a) was
comfortable for virtually all who answered this question. Most students produced the
solutions for (b) and (c), although dropping of some terms or incorrect definitions of
the terms was relatively common. Like part (a), some time and consideration would
have caught most errors. A large number found (d) more challenging. Although most
got the equation setup with the condition for hydrostatic equilibrium and the solution
for M(r), the two integrals proved challenging to complete correctly. The next step of
getting the T dependence was done well for those that made it through the solution for
P(r). And again for (e), only those that completed the previous two parts scored well.

Q3. By some way this was the least popular question. Parts (a) and (b) were relatively
straightforward for all. In part (c) the major difficulty was just in defining the number
density of H and He. For all who managed that, then the fv expression was then
achieved. (d) and (e) were somewhat easier than many thought, and are actually more
of a definition rather than derivations. (f) was challenging and required several steps
and only two students of the 6 answers managed to make significant headway.
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C3.1: Algebraic Topology

Some students erroneously answered that there was only one 0-cell in Question 1(a)(i),
which has the effect of making subsequent computations significantly easier. Most
students failed to recognise X in Question 1 as a torus. This make it particularly
challenging to answer Question 1(c)(i).

Question 2 was done well by most students, with the exception of (b)(iii) which proved
particularly tricky.

Question 3 was by far the most challenging, and the fact that the figure was missing
made it essentially impossible to do.
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C3.2: Geometric Group Theory

Question 1. This question was the most popular. Some candidates missed the require-
ment that A’, B’,C’ should be pairwise distinct. Part (b) was well answered and displayed
a sound knowledge of normal forms and structural properties of amalgamated products
and their subgroups.

Question 2. This question was quite popular as well. Most candidates were able to
produce an accurate construction of a free basis for a group acting freely on a tree. Part
(b) was well answered too, with several smart answers, but also a few answers where
some confusion between free groups and their bases, and linear spaces and their bases
was perceptible.

Question 3. This question was attempted by less than half of the candidates, and those
who answered it did not obtain high marks.In the end of (a), (ii), almost all candidates
missed the fact that there were two cases to discuss. Parts (b) and (c), (ii), were answered
well, question (c) (i) less so, even if it was very close to arguments seen.
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C3.3: Differentiable Manifolds

Question 1. For (c), the answer I hoped for was along the lines of

Lv(iw(α)) =
d
dt

(
φ∗t(iw(α)

)∣∣∣
t=0 =

d
dt

(
iφ∗t (w)(φ∗t(α))

)∣∣∣
t=0

=
(
i d

dtφ
∗

t (w)(φ
∗

t(α)) + iφ∗t (w)(
d
dt
φ∗t(α))

)∣∣∣
t=0

= iLvw(φ∗0(α)) + iφ∗0(w)(Lvα) = i[v,w](α) + iw(Lvα),

but few did this correctly. In (d), combining (c) and Cartan’s formula gives an equation
involving +iw ◦ iv(dα) rather than −iv ◦ iw(dα), and only minority noticed this and
explained why they are equal. For (e), one should prove the result by induction on
increasing k, which was often not completed.

Question 2. Part (c) was modelled on the computation of H∗(Sn) in the classes, but
many candidates could not get to the end. In (c)(ii), the correct answer was ϵ =
ηUβ+ ηVγ+ δ∧dηU. Very few candidates got this, most wrote ϵ = ηUβ+ ηVγ and failed
to notice that dϵ , α.

Question 3. The raw marks on this question varied between 0 and 25. Candidates
who understood the material scored highly, others did poorly. Some candidates did
not understand part (b) and attempted to answer (b)(i)–(iv) independently, rather than
finding functions di satisfying all of (i)–(iv).

19



C3.8: Analytic Number Theory

Overall this years question was reasonably successful, producing a good spread of
marks with all questions reasonably popular amongst candidates (question 3 was
slightly less popular). A few candidates seemed to have suffered from time issues
(particularly with question 3), but this did not appear to be too widespread. The ques-
tions succeeded in distinguishing between candidates, and almost all candidates were
able to demonstrate at least a basic understanding of core concepts in the course. In
question 1 the bookwork part (a) was almost universally answered correctly. In part
(b) many candidates struggled with demonstrating the inverse, which was not covered
in lectures and so understandably harder. It was slightly surprising that despite many
similar questions in examples sheets and revision sessions, a number of candidates
didn’t know the standard strategy for attempting (c).

Question 2 had the lowest average mark from candidates who attempted it. The most
challenging part (c) did a good job of distinguishing between candidates, since at some
points it required less obvious modifications of content covered in lectures.

Question 3 was the least popular question, but answered well by most candidates
who attempted it. In hindsight the question was maybe slightly too long for the final
question in an exam; several candidates didn’t attempt part (d) even if this was less
difficult in general. Several candidates didn’t spot the relevance of (b)(i) to (b)(ii) despite
the language used, which caused them to slip up slightly. It was pleasing that most
candidates understood the overall strategy pretty well, and the technical execution of
this distinguished between different candidates pretty well.
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C3.11: Riemannian Geometry

Question 1. Part (a) was done well. Part (b)(i) was usually done well, though some
students decided to use an incorrect statement of the Koszul formula which led to
difficulties. In part (b)(ii), students had the right idea but often lost marks for lack of
justification (e.g. that the Vi are orthogonal). Part (c) proved challenging with compu-
tational errors and lack of justification. This was a popular question done by almost all
students.

Question 2. Part (a) was done well. Part (b)(i) was done well, with the common error
being not to note that the required distance is bounded above by L − t. Part (b)(ii) was
done quite well, with marks typically lost for not recognising the significance of |α′| = 1
(i.e. to get the correct parameterisation). Part (b)(iii) proved challenging, with students
unable to construct a suitable variation. Part (c) elicited few attempts, but they were
done well. About half the students attempted this question.

Question 3. Part (a) was done well by almost all students. Part (b) had a mixed response.
As expected, the usual error in (b)(i) was to assume the metric was complete, whereas
others correctly spotted the connection to hyperbolic space. Part (b)(ii) was usually
done well. Part (b)(iii) had similar issues to (b)(i) again as expected, but again a good
number of students spotted the connection to the round metric in higher dimensions.
Part (b)(iv) was usually done well, with the most common error just to miss justification
of completeness or that the product metric constructed as non-negative curvature. Part
(b)(v) was also usually done well, with the only error begin lack of justification of a
uniform lower bound on Ricci curvature. This was another popular question attempted
by most students.

Summary. The exam went well with a good range of marks. Question 2 appeared to be
a bit more challenging for the students, but not overly different from Questions 1 and 3
which seemed to be roughly equal difficulty.
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C3.12: Low-Dimensional Topology and Knot Theory

Question 1 (7 attempts): This question tested knowledge of handle decom-positions
of smooth manifolds, especially surfaces, and their relationship to homology. The
general level of solutions was high. In (b)(i), some candi-dates did not realise that
the coefficients of the boundary map are given by the algebraic intersection number
between the attaching circle and the belt circle. In (b)(ii), some candidates missed the
half twist in the 1-handle. There were no complete solutions for (b)(iii), though several
solutions made good progress.

Question 2 (7 attempts): This question tested knowledge of the linking num¬ber, Seifert
form, and their relation to the intersection form of the Seifert surface. The general level
of solutions was good. In (a)(i), some candidates forgot to say that one only considers
crossings between K and K′ formula for the linking number. In (a)(ii), some did not
consider the oriented smoothing, hence potentially ending up with a non-orientable
surface. Unfortunately, there is an absolute value missing from the definition of the
determinant in the statement of part (b), which makes the determinant well-defined
only up to sign in (b)(i). No marks were deducted in (b)(i) related to any sign issues, and
most candidates noticed the problem. There was no complete answer to (b)(ii), though
there was one essentially complete solution. Some candidates considered projections of
curves on the Seifert surface to the plane and counted crossings near the projection of
their intersection point on the surface, but missed crossings not of this form.

Question 3 (1 attempt): This question tested knowledge of lens spaces, Dehn surgery,
and their first homology and homotopy groups. There was one solution, of a good
standard. Careful application of the Seifert–van Kampen formula in (a)(iii) and the
Mayer–Vietoris exact sequence in (b)(ii) were the more challenging parts of the question.
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C5.5: Perturbation Methods

Question 1. Many candidates attempted this question. The early parts of (a) were well
answered, but the majority of candidates did not use a formal proof by induction to
establish the full asymptotic expansion. In (b) the majority of candidates struggled with
establishing the steepest descent contours, though most recognised that the dominant
contribution to the integral comes from the region close to the saddle point and could
correctly simplify the problem to get the stated result.

Question 2. Many candidates attempted this question. There was a mistake in this
question, the term ∂2u/∂x2 should have read ∂3u/∂x3. This did not affect solutions to
part (a), and this was very well-answered. The typo affected parts (b)-(d) – all candidates
were given marks for making all possible progress.

Question 3. A smaller subset of candidates answered this question. In (a) some marks
were lost for not fully justifying where the boundary layer lies. In (b) many candidates
struggled to solve the equation for f outer

0 , and then solve for the full outer solution. Part
(c) was relatively well answered, but very few candidates could properly demonstrate
use of an intermediate variable to match the inner and outer solutions in (d).
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C5.6: Applied Complex Variables

Question 1

This was by far the least popular question, attempted by only a quarter of candidates,
with the lowest average mark. Parts (a) and (b), which were bookwork, were handled
relatively well. A few candidates managed part (c), though some did not realise ζ̄ = 1/ζ
when |ζ| = 1 so that ℜ(ζ) = ℜ(1/ζ). No candidate completed part (d), though some
managed to get the blowup time, while others managed the volume calculation.

Question 2

This was a popular question, attempted by 88% of candidates. The material was
straightforward, but the question a little unfamiliar (certainly for part (a)). Candidates
who applied what they had learned, rather than trying to remember calculations, did
well. Part (b) was handled better than part (a) in general.

Question 3 This was also a popular question, attempted by 88% of candidates, and had
the highest average mark. The material was more challenging than Q2, but the format
of the question was familiar, and there were some very good answers. Most mistakes
were algebraic. One commom mistake was for candidates to write that the residue of
1/(2k + i) at k = −i/2 was 1 rather than 1/2.
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C6.1: Numerical Linear Algebra

Question 1 had the fewest attempts. Students who attempted this question generally
did well, with the most challenging part being the more elaborate proof of the search
direction orthogonality.

Question 2 had unusually high scores due in part to the similarity between parts a) and
c) which seemed to cause part c) to be more readily solved than anticipated. Part c)
was anticipated to be challenging as Jacobi for eigen-values was only covered briefly in
lecture and as it makes use of an unusual variant of Givens rotations; that said students
performed remarkably on this part which was impressive.

Qeustion 3 part a) on Householder transforms was standard and solved well by most
students with the main omission being not showing the matrices are unitary. Part b)
on the singular value decomposition was solved admirably with the main issue being
eigenvalues which were zero and completing the matrices with orthogonal columns
to span the space. Part c) on the power method was generally well solved, though
few students were careful in considering the case of repeated eigenvalues and the
eigenvector subspace being greater than one-dimensional.
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C7.4: Introduction to Quantum Information

Question 1: This question was the most popular among the students, and those who
attempted it performed very well. Parts (a), (b) and (c) posed no significant problems.
In part (d), most students demonstrated a solid understanding of quantum circuit
analysis, including the phase kick-back mechanism. Some even connected the parity
check to the Bernstein-Vazirani problem discussed during lectures. Part (e) did not
pose a problem for those who understood the phase kick-back mechanism, but some
students struggled to explicitly specify the state of the first register at the output. The
final part required interpreting maximally mixed states as an equally weighted statistical
mixture of any two orthogonal states, specifically |+⟩ and |−⟩. Most students succeeded
in this and correctly identified the probability of the inconclusive answer. However,
the second part of (f), in which a can be any binary string of length three, allowed for
some interpretation. Some students assumed the second register could be measured,
while others assumed it could not. Both assumptions led to different probabilities of the
inconclusive outcome, and both answers were accepted if properly justified. Overall,
this question was relatively easy.

Question 2: This question was attempted by 23 out of 49 candidates. Overall, the
students demonstrated a solid understanding of the core concepts of quantum error
correction, including the origin of syndromes and the conditions for detecting and
correcting errors. Consequently, nearly all of them provided reasonable answers to
all parts of the question. However, due to frequent minor mistakes, only one person
achieved full marks. The common mistakes are: missing minus sign for YY, confusing
the role of checks and data qubits, not being able to identify the logical X and Z operators
and confusing error detection with error correction.

Question 3: Apart from a few small points, most students who attempted this question
did very well on the first few parts. Quite a few lost points in (b) for not actually proving
that the new Kraus operators did indeed satisfy the orthogonality condition necessary
to be Kraus operators. Part (c) was maybe the hardest for most, with few students
successfully arguing why the Kraus operators had to be proportional to the identity;
some used a clever commutativity argument, and others noticed the idea given in the
model solutions. Part (e) was maybe poorly worded, since a lot of students did not
justify why sigma’ was in general distinct from sigma. As for parts (g) and (h), students
tended to either get full marks (often drawing pictures of orthogonal isometries into a
larger Hilbert space as non-overlapping subsets) or few marks at all; quite a few just
neglected to define the measurements asked for in (g), and some tried to argue for
applying V−1 instead of V†.
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C7.5: General Relativity I

The most common combination of questions was Q2 with one of Q1 or Q3, the latter
had almost the same number of attempts.

Q1: Part a (i) and (ii) were generally well done being purely book work and things seen
in class. There were a few students who struggled with a (ii) but by far the majority
got full marks for this part of part a. On the whole a (iii) was poorly done. Only a
few students managed to find all three Killing vectors, though most managed to find
the obvious one by inspection. Many were confused about how to begin despite being
given the equation for a Killing vector in two different forms and some of those that
managed to set up the differential equations then struggled to find solutions from these.

b) The vast majority managed to get 7/7 for part b. A common issue amongst those who
did not get full marks was not being able to recognise how to combine the derivative
on the RHS at the end. This was less a problem with the knowledge of the course and
an oversight on the Leibniz rule for derivatives.

c) Only the top students managed to get full marks on this part of the question, though
many students picked up a few marks. This looks like a nasty question at first sight
but by using part b the student should recognise that b(i) fixes the connection up to the
weight w. Some students managed to see this but then did not input the weight w into
their answer. If the student managed to get c(i) extending to c(ii) was largely trivial,
though a few who did get c(i) did not get c(ii). Some students obtained marks in c(ii)
without having done c(i) correctly by observing how to extend c(i) to c(ii).

Q2: This was the most popular question by far and generally the best performance of
students came in this question.

a) Generally well done. a(i) was almost always done correctly. A few students struggled
to derive the geodesic equations while a few decided to derive the affinely parametrised
equations instead despite it being stated to find the non-affinely parametrised one. For
a(iii) a few students just stated to make the parameter the proper time without showing
anything. Others just stated that if they made dL

dλ = 0 it would be affinely paramtrised,
this does not answer the question and so they picked up only 1 mark.

b) This was done well by most students. Almost everyone got full marks for b(i).
Some lost a mark for b(ii) because they did not justify why they can take the initial
conditions that they chose, saying spherical symmetry was sufficient but they instead
said ‘assume’. The plots were generally correct, though sometimes the interpretation
was patchy. The energy needs to be greater than the potential for motion to makes
sense, a few students allowed for these types of trajectories.

c) Only a handful of students managed to get full marks. For c(i) none noticed that the
light would be reflected from the boundary as it gets there in finite time. Some also
solved for the affine parameter rather than the time. c(ii) should have been obvious
from their plots in part b and was added to test their understanding. A radial timelike
geodesic never reaches r = ∞ as can be seen from part b. Despite this, quite a few
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students managed to find a finite time for the timelike curve to reach r = ∞. This
included students who had correctly plotted the potentials and correctly identified the
motion.

Q3: Quite a few people forgot parts of Birkhoff’s theorem and so did not get full marks.
For part b) this was seen in the problem sheets. A number of students started trying
to solve the geodesic equations despite being told not to assume a geodesic. Other
students were on the correct track but then could not form the inequalities correctly and
manipulate them. For example they identified correctly that f (r) was negative but then
when multiplying by f (r) the inequality remained the same. They would still end up at
the correct answer but it was clear that they had fudged the result to match the given
answer.

c) Most got 5/5 for this question.

d) Very few managed to perform the coordinate transformation in d(i). Some ended
up with a metric that did not make sense since it was degenerate on the horizon which
they stated later was not the case. They should have realised this here. (ii) were free
marks and most got 2/2. (iii) Not everyone explained this well. They needed to state
in the original coordinates one has U < 0,V > 0 however in the new metric there is no
singularity at U = 0 or V = 0 and so can be extended to U,V ∈ R. On the whole this
was done well. A few students did not manage to label the diagram correctly and the
black hole region and exterior were flipped or in the part where there was no spacetime.
These students were the ones who did not score well in on this question and should
have used part (ii) to double check their labelling.
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C7.6: General Relativity II

Q1 was the most popular, followed by Q2 and then Q3 though there was very little
between the numbers.

Q1: Part (a) was done well by most candidates, though a few mixed up the definitions
of a(ii) and a(iii).

Many got most marks in part (b). A common mistake in b (i) amongst those who did
not get the full marks offered was just to show that a null vector remains null after
a conformal transformation making no mention of geodesics. Part b(iv) confused a
number of people despite the conserved charge being the same in the Killing vector
case, not all of those who gave the conserved charge also said it needed to be a null
geodesic.

Part (c) was not done very well. Very few managed to write down the Penrose diagram.
There was a worrying number of students who were unable to identify that the radial
coordinate was finite in this case. It behaves in much the same way that the θ behaves
which should have made them think.

Q2: Parts (a) and (b) were done well overall. Part c was mixed. The strong students
managed to do this without issue while the weaker students scored very few marks on
this question.

Q3: Part (a) was probably too easy as most who attempted it scored 8/8. There were
a few who lost marks because they did not define hµν. Part (b) really separated the
stronger candidates from the weaker ones. A number of candidates did not realise that
they could use their results from part a to simplify the computations despite the hint to
do so.
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C7.7: Random Matrix Theory

Question 1 was well done by the students who attempted it. In (a) (iii), few students
mentioned the fact that the moments are easily bounded here. Few students appealed
to the Wick’s theorem which does not apply here, as the distribution is not Gaussian.
Part (b) is essentially bookwork, but some students were not precise enough when
describing the correspondence with graphs in (i). Parts (i) and (ii) were well done in
general. Common mistakes in Part c include the wrong development of the square. The
explanation in (ii) of the 1/n2 were quite well done. In (iii), perhaps surprisingly, few
students computed that the average is 2, using the number of Dyck paths or the Catalan
number. The application of Borel-Cantelli was well understood.

Question 2 was attempted by most students. The average was quite high as the amount
of bookwork or previously seen material was quite high. In Part a, most students saw
the connection with the vandermonde determinant and showed orthogonality of the
functions. Most students cited Gaudin’s lemma correctly and got the right form for
the probability density. Part b was well done, as most spacing got the correct scaling.
In Part c, some students did not apply the correlation function to the difference of the
angle and that gave them the wrong scaling. Perhaps surprisingly, few students were
able to calculate the asymptotic behaviour of the density for small x even though the
density was provided in the answer.

Question 3 was attempted by few students (around 10). This is perhaps because it
involved Dyson Brownian motion which was covered in lectures but perhaps less than
the first two questions. The question was a twist on a problem on the first problem sheet
and a good student should have seen the connection. All students that attempted the
question got Part (a) as it was simple linear algebra. No student realized that the gap
process has a simple form, 2D Bessel process as seen in lecture. Few students applied
the Itô’s formula correctly. Most students got that the SDE is ill-defined if one starts at
0. Nobody attempted Part (c) even though the density of the OU process was provided.
It is easy to write down the integral for the expectation from the density. It would
have gotten full mark but nobody attempted it. The PDF is a similar computation. No
information on Part (b) was necessary.

Summary: The exam was well done in general. There was a good amount of bookwork
and most students did well on this. Some (very few) students struggled with the
questions even though they were close to questions done in classes or in lectures.
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E. Comments on performance of identifiable individuals

Prizes

Prizes were awarded to the following candidates:

The top prize was awarded to:

Tevz Lotric (St John’s College)

One student was highly commended for his dissertation:

Nikolai Maslov (Merton College)
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