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Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers
2022 2021 2020 2019 2018 2017 2016

Distinction 38 42 42 40 25 31 18
Merit 13 10 9 6 n/a n/a n/a
Pass 11 12 3 6 17 10 3
Fail 1 3 1 1 0 0 0
Total 63 67 55 53 42 41 21

Percentages %
2022 2021 2020 2019 2018 2017 2016

Distinction 60 63 76 76 60 76 86
Merit 20 15 17 11 n/a n/a n/a
Pass 17 18 5 11 40 24 14
Fail 2 4 2 0 0 0 0
Total 100 100 100 100 100 100 100

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.
No vivas were held.

• Marking of scripts.
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All dissertations and three mini-project subjects were double-marked.
In cases of significant disagreement between marks, the two markers
were consulted to agree a reconciled mark.

All written examinations and take-home exams were single-marked
according to carefully checked model solutions and a pre-defined
marking scheme, which was closely adhered to. A comprehensive
independent checking procedure was followed.

B. New examining methods and procedures

Written examinations were all held in person this year in a partially open-
book format (except in cases where special circumstances made it necessary
for individuals to take invigilated exams online).

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

D. Notice of examination conventions for candidates

Notices to candidates were sent on: 18th October 2021 (first notice), 23rd
November 2021 (second notice), 25th February 2022 (third notice), 10th
March 2022 (fourth notice) and 5th May 2022 (final notice).

The examination conventions for 2021-2022 are on-line at
http://mmathphys.physics.ox.ac.uk/students.
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Part II

A. General Comments on the Examination

B. Equality and Diversity issues and breakdown of the re-
sults by gender

Removed from public version.

C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 2 and in the
Average USM per Formal Assessment graph below. In accordance with
University guidelines, statistics are not given for papers where the number
of candidates was five or fewer.
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Table 2: Statistics for individual papers
Paper Number of Avg StDev

Candidates USM USM
Advanced Fluid Dynamics - - -
Advanced Philosophy of Physics - - -
Advanced Quantum Field Theory 32 67 16
Advanced Quantum Theory 25 65 20
Algebraic Geometry - - -
Algebraic Topology - - -
Applied Complex Variables 9 66 11
Collisionless Plasma Physics - - -
Differentiable Manifolds 9 64 4
Dissertation (single unit) 18 72 -
Dissertation (double unit) 25 77 -
Elasticity and Palsticity - - -
Further Functional Analysis - - -
Galactic and Planetary Dynamics 9 67 10
General Relativity I 27 64 18
General Relativity II 8 67 10
Geophysical Fluid Dynamics 8 67 14
Groups and Representations 42 70 15
Homological Algebra - - -
Introduction to Quantum Information 34 74 13
Introduction to Schemes - - -
Kinetic Theory 7 70 11
Networks 12 70 7
Numerical Linear Algebra - - -
Perturbation Methods 16 66 12
Quantum Field Theory 58 70 12
Quantum Matter 15 69 22
Radiative Processes and High Eng. Astro. - - -
Random Matrix Theory - - -
Riemannian Geometry - - -
Solid Mechanics - - -
Stochastic Differential Equations - - -
String Theory I 24 70 9
Supersymmetry and Supergravity 7 80 14
Topics in Fluid Mechanics - - -

The number of candidates taking each homework-completion course is
shown in Table 3. In accordance with University guidelines, statistics are
not given for papers where the number of candidates was five or fewer.
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Table 3: Numbers taking each homework completion course
Paper Number of Percentage

Candidates completing course
Advanced Fluid Dynamics - -

Astroparticle Physics 6 100
Collisionless Plasma Physics - -
Collisional Plasma Physics - -
Conformal Field Theory 25 100
Cosmology 13 100
Galactic and Planetary Dynamics - -
Group and Representations 41 98
High Energy Density Physics - -
Kinetic Theory 9 100
Nonequilibrium Statistical Physics 7 100
Quantum Field Theory in Curved Space Time - -
Quantum Matter I 7 100
Quantum Matter II 7 100
Quantum Processes in Hot Plasma - -
Renormalisation Group 10 100
Soft Matter Physics - -
String Theory II 10 100
Supersymmetry and Supergravity 11 100
Symbolic, Numerical and Graphical Scientific Programming 12 100
The Standard Model and Beyond I 8 100
The Standard Model and Beyond II 8 88
Topological Quantum Theory 20 100

D. Assessors’ comments on sections and on individual ques-
tions

Advanced Fluid Dynamics

Question 2:

There was a mistake in part (d) of the question, µe · n should have been
5µe · n in the first displayed equation for part (d).

Noone completed part (a) as intended, using the divergence theorem to
convert the volume integral into a surface integral, substituting u = e ·x on
the surface, then using the divergence theorem again to equate the surface
integral of nix j with the volume integral of ∂i x j = δi j.

Noone completed part (b) as intended, using the divergence theorem as in
part (a) with u = e · x on the outer boundary of the fluid, but now with
u = Ḋ · x on the boundary of the particle. Using the divergence theorem
again for the volumes enclosed by the two surfaces, with consistent signs
for the normals, gives the result. The integral over the outer boundary
becomes an integral over the whole volumes enclosed by this surface,
giving |V|e instead of |Vf|e even though the volume occupied by fluid is
|Vf|.
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Most candidates tried to superimpose flows using part (a). However, the
presence of the particle changes the flow in the fluid outside the particle,
so one cannot take u = e · x in the fluid.

Part (c) was done correctly by everyone.

Writing u = Ḋ · x + ũ as instructed, the first part of the solution (u = Ḋ · x)
satisfies the Stokes equations and has strain rate Ḋ. The flow ũ thus satisfies
the Stokes flow problem in the hint with ũ = 0 on |x| = a, and ũ ∼ (e− Ḋ) · x

as |x| → ∞. The outer boundary can be taken to infinity as the particle is
small. The stress due to this flow satisfies σ̃ · n = 5µ(e − Ḋ) · n on |x| = a.
We can apply boundary conditions at |x| = a because the deformations of
the sphere are negligibly small. The total stress in the fluid just outside the
particle boundary is then

σ · n = (−pI + 2µḊ) · n + σ̃ · n = −pn + 5µe · n − 3µḊ · n.

Equating this with σ · n = (−pI+ 2GD) · n just inside the particle boundary,
for all directions of the normal n, gives the second displayed equation.

Part (e) received one complete attempt and some partial attempts. The
tensors e, D, Ḋ are all traceless, so Trσ = −3p in both the fluid and the
particle. Taking the traceless part of σ just removes the pressure,

S = 2µe + ϕ(2GD − 2µḊ) = 2µ(1 − 5ϕ/3)e + (10/3)ϕGD,

using the second result in part (d) to eliminate Ḋ. Taking the time deriva-
tive and eliminating Ḋ again gives the required result. No further approx-
imations are needed. As τ → 0 we recover the Einstein viscosity for a
suspension of rigid particles.

Advanced Quantum Field Theory

Question 1: related to a 1–loop calculation of the production of a Higgs
boson via γγ collisions. This was completely unseen. Parts (i) and (ii)
were relatively straightforward questions in order to set the problem up,
and were answered well. Part (iii) required that the trace in the numerator
be evaluated, using the provided γ matrix identities and the student’s
knowledge about the properties of transverse photon polarizations. A
good number of students achieved full marks or close to this, while some
knew the procedure to follow but made some algebra mistakes (certainly
possible given the trace manipulations required). A small number failed to
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answer the question or did not know how to handle the trace at all. Parts
(iv) and (v) followed on from part (iii) but were asked in such a way that
they could be fully answered on the basis of the quoted result alone. Part
(iv) was answered well in general, with many students noting what was
needed in order for the integral to be finite. However, almost none could
explain why this should be the case. As with part (iii) some students either
did not answer or recognise what was needed. Part (v) was clearly more
challenging, with no students achieving full marks or close to it. While the
requirement that B = C was observed by many students, the full reason
for this was not.

Question 2: (a) was bookwork relating to the running coupling in QFT.
It was answered completely by almost all students. Question 2 (b) re-
lated to various tree–level QCD and QED scattering processes, requiring
that the scattering amplitude be evaluated, as well as colour factors be
evaluated. Part (i) involved a relatively standard amplitude calculation.
Many students achieved full marks or close to it. Some students struggled
to get the colour factors correct, or had time issues potentially. A small
minority could not identify the contributing diagram and hence set the
question up at all. Part (ii) simply required that the relevant diagrams be
identified and the corresponding contribution in the amplitude explained.
It was answered well by almost all students. Part (iii) required that the
contributing diagrams be identified and the corresponding colour factors
evaluated. Many students achieved full or good marks on this. A fair
number did not get the full result out, often not getting the colour factor
for the interference correct. A small number could not identify that the
colour factors are different between the terms.

Question 3: (a) related to spontaneous symmetry breaking. Part (i) was
bookwork and answered well by almost all students. Part (ii) related
to the breaking of a SO(3) symmetry, with the general SO(n) case being
familiar from the lectures. Many students achieved full marks. Part (iii)
was unseen, but followed a similar methodology to (ii). The standard of
answer was more mixed here, with some students achieving good marks,
but a good number struggling to deal with the new term in the potential
or set the problem up correctly. Question 3 (b) was bookwork, and was
answered well by the majority of students.

Advanced Quantum Theory

Q1 A question studying the sawtooth Ising chain using the transfer-matrix
method. For part (a), full marks were given for any reasonable derivation,
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although students were penalised 1 mark for not giving some reason why
the transfer matrix did not involve the apex spins s̄i as was explicitly
requested in the problem. For part (b), students should have been able to
start with the transfer matrix specified in the problem statement of part (a)
to compute the free energy. Several students lost 1 mark for not recalling
that there are 2L spins in the system (even though this too was stated in
the question), which leads to a free energy twice as large as the correct
answer. (However, students were not subsequently penalised for incorrect
answers that resulted solely from propagating this error downstream.)
On part (c), many students missed the simple expression s = −∂ f/∂T|L
for the entropy density, and many also got bogged down by algebraic
complexities. A useful step is to first simplify the piece of the free energy
density inside the logarithm (i.e., the partition function) in the low- and
high-temperature limits for the two cases J̄ = J and J̄ > J before taking the
temperature derivative, which vastly reduces the extent of mathematical
manipulations required. While a rather disconcertingly diverse range of
answers were given for the low-temperature entropy density (zero, finite,
and divergent in both correct and incorrect permutations thereof), nearly
all students realised that the high-temperature entropy density is universal
and is just that of a free Ising spin. Finally, for part (d) while most students
correctly identified the set of ground states for both the two cases, far fewer
students correctly explained how these translate into a finite T→ 0 entropy
density when J̄ = J but not when J̄ > J, required for full marks.

Q2 A question applying the Holstein-Primakoff technique to an easy-plane
ferromagnet with a Dzyaloshinskii-Moriya type term, with a final piece
exploring a situation where these may not have the same symmetry axes.
On part (a), students were penalised for not clearly explaining why a
constraint was needed in the Holstein-Primakoff approach. Furthermore,
given that the constraint was specified in the problem, for full marks two
additional complications should have been identified. In part (b), the
reason u ≫ 1 was given only to identify the preferred quantization axis
for the HP approach. Some students chose to use this fact to drop terms in
H. Although this was unnecessary to completing the problem, full marks
were given except when students completely dropped the J(Sx

i Sx
i+1+Sy

i Sy
i+1)

term, which is clearly incorrect (in contrast to, say, writing J(1 + u) ≈ uJ
for u≫). Wherever possible without altering the meaning of the problem,
students were not penalised for this choice downstream. Modulo these
incorrect assumptions most students successfully worked out the basic
forms of the two coefficients A,B, but often with sign errors or omitted
prefactors of J and/or S which were required for full marks. Most students
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successfully implemented the Fourier transform piece of part (c), although
the answers to the conceptual questions of the ground/low-lying excited
states were of widely varying quality and level of rigor. On part (d), only
a handful of students realized the need to first determine the minimum of
the dispersion ϵ(k) which occurs at some k∗ , 0, in order to successfully
obtain the critical value of u for the gap-closing transition. Finally, in part
(e), many students attempted to give qualitative reasoning rather than an
explicit calculation as requested in the problem and suggested in the hint.
Such cases were nevertheless not penalised as long as a serious attempt
was made to give a complete explanation.

Collisionless Plasma Physics

The questions on plasma waves (Q1 and Q2) were handled really well by
the candidates, all of whom showed excellent grasp of the material and
scored nearly full marks.

The KMHD question (Q3) proved far more difficult. In part (a), candidates
had a basic grasp of what needed doing, but the long calculation necessary
to do it defeated, to varying degrees, all. In part (b) again, there were few
conceptual difficulties (although the interpretation of the three temperature
evolution terms as due to compressional heating, heat flux, and pressure-
anisotropy, or “viscous”, heating might have been articulated clearer), but
considerable difficulties with algebra. There was a minor error in the
exam script — “left-hand side” should have been “right-hand side” — but
all candidates figured that out. Answers, or lack of answers, to part (c)
suggested that only one candidate really grasped how Braginskii viscosity
arose from the collisional limit of CGL equations.

Groups and Representations

Question 1: This question was attempted by 38 students. Parts (a), (b)
and (c) were, on the whole, carried out well, with occasional calculation
errors, particularly for the characters, affecting performance. Part (d) and
the requested interpretation in part (e) caused more problems but were
still completed well by a good number of students.

Question 2: A very unpopular question attempted by only 4 students.
Much was done well but in some cases there were problems correctly
identifying the positive simple roots.

Question 3: This question was attempted by all 42 students. Most parts
were done very well. The main problems were causes by incorrect applica-
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tions of Schur’s Lemma in part (b). Many also struggled to come up with
sensible physical interpretations in parts (d) and (e).

Question 4: This question was attempted by all 42 students. The routine
calculations in parts (a), (b) and (c) were done very well. A considerable
number of students failed to write down the correct projection matrix in
part (d). The application to unification in part (e) also caused problems
and only few students were able to identify the correct mulitplets.

Kinetic Theory

Question 1: Most candidates made little progress with parts (c) and (d).
There was a mistake, a missing ·n in the displayed equation for part (d).
Though regrettable, this seemed to cause little difficulty.

For parts (b) onwards it was essential to distinguish between the half-
spaces v · n > 0 and v · n < 0. Common mistakes were to omit integration
ranges from integrals, and to assume that the reflection formula (⋆) held
for all velocities v, not just for reflected particles with v · n > 0.

(a) Almost all candidates completed this part successfully, though few took
the most direct route of multiplying the Boltzmann equation by 1 + log f .
A few candidates assumed the BGK collision operator, and so did not
establish the result for the Boltzmann collision operator as required. The
best solutions noted that 1 is a collision invariant, and that B(V, θ) ≥ 0.

(b) The most complete answer observes that, for each velocity v′ directed
towards the boundary, R(v′,v) is a correctly normalised probability dis-
tribution for the reflected velocity v directed away from the boundary.
Several candidates tried to use the given formula (⋆) for particles propa-
gating both towards and away from the boundary. Some omitted the v · n
from the mass flux

∫
v · n f dv.

(c) This was found much more difficult than expected. To match the hint,
define g(v) = f (v)/ f (0)(v) and consider, for v · n > 0,

C
(

f (v)
f (0)(v)

)
= C

(
1

|v · n| f (0)(v)

∫
v′·n<0

R(v′,v)|v′ · n| f (v′) dv′
)
.

Many candidates tried to treat f (v′)/ f (0)(v) as g(v′), but f (0) is then evaluated
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at v not v′. Instead, we must multiply and divide by f (0)(v′), giving

C
(

f (v)
f (0)(v)

)
= C

( ∫
v′·n<0

R(v′,v)
|v′ · n| f (0)(v′)
|v · n| f (0)(v)︸                    ︷︷                    ︸
w(v′)

f (v′)
f (0)(v′)

dv′
)
.

This defines a correctly normalises weight function w(v′) over the half-
space v′ · n < 0, so the hint gives

C
(

f (v)
f (0)(v)

)
≤

∫
v′·n<0

R(v′,v)
|v′ · n| f (0)(v′)
|v · n| f (0)(v)

C
(

f (v′)
f (0)(v′)

)
dv′.

We can now multiply by |v · n| f (0)(v), which is independent of v′, and
integrate both sides over v · n > 0. Evaluating the v integral on the right-
hand side using property (ii) of R gives the required result.

(d) Few candidates spotted that the function C(g) = g log g gives J from
part (a). Many used C(g) = − log g, which gives f (0) log f instead of f log f .

The correct Maxwell–Boltzmann distribution to use is f (0)(v) ∝ exp(−|v|2/2θ)
for the stationary boundary, not f (0)(v) ∝ exp(−|v − u|2/2θ) centred on the
fluid velocity u adjacent to the boundary. We know that u ·n = 0 from part
(b), but the tangential fluid velocity generally does not vanish.

Question 2: Performance on Question 2 was variable. The question was
probably on the harder side but some students did acquit themselves
extremely well—proof of the principle that this was doable.

Part (a) was perfectly standard and was done perfectly by all.

Part (b) required realising that, since ωpi ≪ ωpe, the term containing the
instability could only be non-negligible if |kui − ip| ≪ p. An expansion
ip = kui + iδp was then to do the trick.

Part (c) had an easy bit and a harder bit. The evolution of the electron
energy was easy and standard (just assume kv, γk ≪ ωk ∼ ωpe), and quite
a few figured it out. The evolution of the ion energy required integration
by parts and some algebra substituting for ωk and γk from the solution
obtained in Part (b). Very few could do this efficiently or arrived at the
right answer, but several did get the basic idea right.

Part (d) was an “essay question”: no calculations needed, just a realisation
that the beam was the energy source from which the instability transferred
energy into Lamgmuir waves, whose energy was 2E (electric + kinetic).
The kinetic part of that energy showed up as an increase in the kinetic
energy of the electron distribution.
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Part (c) required qualitative thinking—often hard. As the system evolves,
the ion beam slows down while the electron distribution gets wider, so
the “gap” between them becomes less pronounced. It is reasonable to
guess that the instability saturates when that gap roughly “fills up”, i.e.,
when vthe ∼ ui. So the saturation level is something like E ∼ menev2

the/2 ∼
meneu2

i /2.

Question 3: (a) Some candidates did not recover the correct definition of
the instantaneous Hamiltonian, Hd(x,v) = |v|2/2+

∫
dx′dv′U(x, x′)Fd(x′,v′).

(b) This question did not cause any difficulty.

(c) Many candidates forgot to mention that ∂F0/∂t = −⟨[δF, δΦ]⟩, i.e. this
term is second-order in the perturbations, so that it can be neglected in the
system’s first-order evolution equation.

(d) The manipulations of the equations were done correctly, except, in
some cases, for the explicit mention that Im(ω) > 0 large enough ensures
the appropriate vanishing of eiωtδF(t) for t→ +∞.

(e) Some candidates missed the fact that F0 = F0(J, t) allows one to average
∂F0/∂t with respect to θ.

(f) Some candidates missed the mass prefactor, m, in the thermal equilib-
rium, F0(J) ∝ e−βmH0(J).

Quantum Field Theory

Question 1: This question was mostly very well done. Some candidates
failed to take note of the identities given at the end of the question and
embarked on computing loop integrals from scratch. Candidates were
oftenunsure about when external momenta could be ignored in computing
the counterterms; only in the case of δz need the external momentum be
retained.

Question 2: This question was mostly very well done, but there was a
wider variety of errors than in the first question. Many candidates were
unable to get the Feynman rules completely correct; the most common
errors were failing to notice that the mass of the auxiliary field is 1, and
getting the wrong sign for the vertex rule. Some were confused about
when antisymmetry is required (in states with identical fermions, but not
fermion/anti-fermion states). Most candidates who managed the last part
did it by graphical analysis rather than using the path integral which is
easier.

Question 3: This was the question candidates found hardest, and some
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were clearly running short of time. A number of candidates obtained the
correct result in part a) only to then erroneously conclude that it is zero
by being careless with Dirac delta functions. Many candidates struggled
with part b) because they did not realise that the result obtained in part a)
should be used.

Quantum Matter

Question 1:

Part (a) was done fairly well by most people. A question like this occurs
almost every year and I think by this time students expect it. Some marks
were lost in not answering all parts of the question. A fair number of
students did not manage to handle the integration by parts. Making mis-
takes in the integration by parts did not cost many marks here, but often
confused students on later parts of the question where many marks were
lost.

A large fraction of those that got (a) correct did manage to get (b) as well.
However many did not manage the simple manipulation to put it in the
form of (c).

Part (d) confused a lot of students. Just because expectations come out
equal does not mean the operators are equivalent. A few students got
full marks on this, a perfect answer required realizing that ”off-diagonal”
terms would not be modeled by the proposed approximation.

(e) On this part many students got some marks by discussing the Landau
criterion and guessing that the disperion is quadratic. Very few got full
marks by *correctly* arguing that the quasiparticle excitations would be
sub-linear. Invoking an incorrect conclusion from part d was only give
partial credit.

Question 2:

Parts (a) and (b) of this problem are exact duplicate of a homework as-
signment so all students should have gotten it right. Unfortunately, a fair
number did not. Part (c) differs from the homework only in that we need to
use the 2D fourier transform of the coulomb interaction rather than the 3D
fourier transform. (The actual fourier transform is given to the students,
but some did not use it).

There were a good number of students who essentially got everything cor-
rect up to the last part of part (d). Students realized that a diverging velocity
is problematic, but very few students realized that this stems from the long
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range nature of the Coulomb interaction. No students realized that the
fundamental mistake is that we are using an ”instantaneous” approxima-
tion for the coulomb interaction whereas the electromagnetic waves that
carry the coulomb interaction have finite velocity that we usually ignore.

Radiative Processes and High Energy Astrophysics

Question 1: overall students were able to solve this question reasonably
well. Nevertheless I found 3 recurrent issues: when determining the
number density in part d, students assumed filaments were aligned with
the line of sight, which is the least probable configuration. Students did not
fully justify why stimulated emission could be ignored in part c. Although
the final formula giving the number density as a function of equivalent
width was correct, students almost always got the order of magnitude of
the final number wrong. This was mostly to errors in unit conversion.

Question 2: The average mark for this question was very similar to Q1. I
do not see any particular patterns in the responses. The students did not
seem to grasp the diffuse shock acceleration can explain the highest particle
energies ONLY if DE/E u/c. Otherwise, the answers show a reasonably
good understanding of this topic.

Supersymmetry and Supergravity

Question 1: The overall students’ performance on this question was good.
Parts (a), (b), (c) cover standard material, and almost all students gave
correct answers. Part (d) is a problem that the students had not seen
during the lectures or in the homework assignments. All students were
able to follow the logic of the question, but a few made algebraic mistakes
in manipulating Grassman elds/variables.

Question 2: The students’ performance was good for the most part. Parts
(a) and (b) were standard, and received good answers overall. In part (c),
a couple of students were not able to draw the conclusion that no SUSY
vacua are found in the second model, despite writing down the correct F-
term equations. Part (d) was about the eld content of a vector multiplet of
4dN = 1 supersymmetry. Only a couple of students were confused about
representations of the component elds, with all others giving the correct
answer. Part (e) involves a simple proof in superspace, and all but one
student indicated the correct steps involved in the proof. Part (f) proved to
be more challenging for the students. Overall, the students were somewhat
confused by the question on the dimension of moduli space; most students
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correctly counted degrees of freedom, and subtracted gauge redundancies
and the D-term equation, but some applied gauge invariance twice, or
failed to combine these ingredients correctly. Not all students attempted
the last bullet point in the question (which was a new problem that was
not covered in class/homework).

C2.2: Homological Algebra

Question 1: Question 1 was mostly done well by the students. The task
of showing that left derived functors are additive functors was somewhat
ambiguous: some students interpreted it as asking to show that it’s a
functor, while some others interpreted it as asking to show that it’s additive.

Question 2: Many candidates forgot to check in (a)(iii) the categorical
equivalence on morphisms (not just on objects). The most di cult part was
(c), but also the implication 3 to 1 in (b) caused di culties.

Question 3: Part (a) and (b) were mostly done well, but parts (c) and (d)
turned out to be rather dichotomic: 3 students solved them very well,
while the others did essentially nothing.

C2.6: Introduction to Schemes

All candidates did exercise 1, and then the candidates were roughly split
50-50 in choosing exercise 2 or 3. The average raw marks for exercises 2
and 3 were roughly equal, both being 3 raw marks less than the average
for exercise 1.

Question 1: (b) many candidates only proved the property at the level of
topological spaces, without considering sheaves (in particular, without us-
ing the assumption that an open subscheme structure was chosen). Many
students did not remember the bookwork for (d)(i), essentially all candi-
dates got the first counterexample for (d)(ii) but only a few managed to
find the second.

Question 2: (a) some confusion in writing down the complex correctly,
or losing one raw mark for not saying why it suffices to just consider a
cover by two basic open sets; (b) was mostly fine; (c) not many candidates
explained how the maps in the short exact sequence were defined; (d)(iii)
only very few candidates considered the O(k) bundles for suitable k.

Question 3: (b)(i) most candidates were not careful about the issue that
epimorphisms are not necessarily surjective on sections, here the key is to
consider a generator of L(U) as a free O(U)- module on a small enough
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neighbourhood U; (c) was mostly fine; (d)(i) again identifying L(U) with
O(U) by a choice of generator makes this part easier; (d)(iv) not many
candidates checked that the two open subsets cover X, and that the two
maps agree on the overlap; (d)(v) not all candidates noticed that the two
required functors were already constructed in (c) and (d)(iv), so it was
sufficient to say that one checks the constructions are natural and inverse
to each other.

C3.1: Algebraic Topology

Essentially everyone chose Exercise 1, and there was a 50-50 split in choos-
ing ex.2 or 3.

Question 1: (a) candidates often just wrote down the answer for the cup
product for T2, without explaining how they used (if they did) the Künneth
theorem to compute it; (b) many candidates did not spot that it was enough
to apply the projection to the homotopy, because they never wrote down
the actual homotopy map; (c) after showing injectivity of the pull-back
of the projection map; candidates sometimes did not explain why the
SES splits; for the cup product part the key was to consider the unit; for
the last part not many candidates realised that the non-commutative cup
product from part (1)(a) (using projection to one circle factor) provided a
counterexample.

Question 2: (a) generally fine; (b) some minor slips e.g. not noticing that
G/2G=0 or Hom(Z/2,G)=0; (c) all candidates wrote a correct fundamental
cycle, but very few finished the exercise: some candidates did not draw
the barycentric subdivision correctly, some candidates guessed a chain that
works but miscalculated the cap product (which needs to be separately
calculated, by linearity, for each of the two faces).

Question 3: (a) several candidates wrote down Poincaré duality as a cap
product involving homology and cohomology, instead of the requested
bilinear form on cohomology (working modulo torsion, in complemen-
tary dimensions, and using cup product); acceptable was also to use cup
product using coefficients in a field, although the answer to the second
half of the question was then harder or incomplete); (b) some candidates
forgot to reduce the homology of the quotient when calculating the relative
homology; (c) many good answers here, the last part can be done in several
ways (either by course methods considering the pull-back on cohomology
using that H2 of the torus is generated by H1 classes which pull-back to
zero in H2(S2), or using homotopy methods: the second homotopy group
of a torus is zero or more explicitly: lifting a map from S2 to the torus to
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the universal cover R2 of T2 and then using that R2 is contractible).

C3.3: Differentiable Manifolds

Question 1: This was a popular choice of question. Part (a) was bookwork
and done well. Part (b) was usually done well by students, with marks
usually only being lost due to lack of justifcation as to why the map is
a submersion. Part (c) was bookwork and typically done well. There
was a mixed response to part (d). In (d)(i), the most common reason for
losing marks was not justifying suffciently why the maps are embeddings
(and not just immersions) and omitting the argument as to why the curves
are disjoint. In (d)(ii), the usual approach was to draw a diagram, which
yielded the correct minimal distance, but often students failed to correctly
identify the points where the minimum is attained. In (d)(iii), the main
issue was in showing the linking number is positive, which few students
succeeded in justifying.

Question 2: This was a popular choice of question. Part (a) was bookwork
and usually done well. Part (b) was bookwork or seen material and usually
done well. Part (c) was challenging for students. Some recognized they
should use the definition of the Lie derivative and the earlier parts of the
question, but they did not reach the desired conclusion. Part (d) had a
mixed response from students. Part (d)(i) was either done very well or
was found to be difficult. The main issues were that students were not
able to spot the solutions to the ODEs defining the flow, and that they
missed out the part about the curves preserved by the flow. Part (d)(ii)
was understood conceptually, but often led to computation errors.

Question 3: This was the least popular question. Part (a)(i) was bookwork
and done well. Part (a)(ii) produced a mixed response. Students who
attempted it usually got the key idea, but marks were lost in justifying
the argument. For part (a)(iii), the ”if” part of the statement was done
well, but the ”only if” part proved challenging. Students who attempted
it followed the hint for that part, but were not able to reach the desired
conclusion. Most students missed out the final part of (a)(iii) entirely. Part
(b) was bookwork and usually done well, with marks only typically lost
for not justifying why the pullback induces linear maps on cohomology.
Part (c) was again bookwork and done well. Part (d)(i) was either done
well with students only losing marks in justification or it was challenging,
which was the case for the majority of students. Students who attempted
(d)(ii) did it correctly, only losing marks in showing that the classes are
linearly independent.
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C3.4: Algebraic Geometry

Question 1: All students answered this question,. There were no issues
with the bookwork in (a) and (b). For (c), the standard examples included
unions of hypersurfaces or of disjoint points, but a full solution needed
the comment that as the base field is algebraically closed, it has infinite
cardinality, so an arbitrarily large finite set of disjoint points or hypersur-
faces can be found. (d) was largely done well; some candidates failed
to realise that the quadric is also isomorphic to the affine line as an ab-
stract variety. (e) caused more issues; the plane component was found by
many candidates but the identification of the other component was less
straightforward.

Question 2: Most candidates answered this question. In (a), one issue
that lead to the loss of a mark was if students failed to explain that pro-
jective morphisms are defined locally, or if they failed to mention that the
homogeneous polynomials defining them should not have common zeros.
(b) was done well. In (c), many candidates found the right open sets,
but sometimes failed to argue that they are affine or the proof that the
relevant morphisms give an isomorphism had gaps. (d) and (e)(i) were
generally done well. For (e)(ii), many candidates thought the answer was
yes, though the strongest answers gave a full argument for the fact that S
is singular so cannot be isomorphic to the projective plane.

Question 3: Only 4 candidates answered this question. From the scripts it
was clear that several others attempted this question, but got stuck in (b)(i)
so moved to the other questions. Of the 4 students who carried on, 3 gave
substantially complete answers, whereas one did not get very far.

Overall, the average mark on this paper was lower than in previous years,
indeed the questions were a little harder than in some previous years,
leading to better differentiation of candidates.

C3.11: Riemannian Geometry

Question 1. Part (a) was bookwork and typically done well. Though part
(b) was seen and usually done well, marks were sometimes lost because
students did not show that the second fundamental form is symmetric. Part
(c) was either done almost perfectly or else students found it very challeng-
ing. The common issue was to use the minimality condition correctly and
compute the appropriate second fundamental form terms arising from the
Gauss equation.
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Question 2. Part (a) was either done well or the common issue was to try
to use the first variation formula and assume the curve was a geodesic,
rather than use the hint and the minimizing property. Part (b)(i) was
essentially bookwork and typically done well. Students who attempted
(b)(ii) invariably had little or no problems with it.

Question 3. Part (a) was bookwork and usually fine. Most students
understood well what to do in (b). The only common issues in (b) were
not explaining why the exponential map is surjective (using Hopf–Rinow)
and why the metric defined in (ii) is complete (again, using Hopf–Rinow).
Part (c) proved challenging, with most students not realizing that they had
to look at Jacobi fields on the round sphere and relate them to Jacobi fields
on the product.

C3.12: Low-Dimensional Topology and Knot Theory

Solutions for Question 1 were generally good, with some candidates failing
to require cobordisms to be compact in 1(a)(i). Solutions for 1(a)(ii) were
essentially all correct. In 1(a)(iii), several candidates failed to check in-
verses. In (b)(i), candidates usually had the right idea. Part (b)(ii) proved
to be more difficult, but there were several different correct approaches
among the solutions, including doubling and the long exact sequence of
a pair. Solutions for (b)(iii) were typically correct. There were essentially
no complete solutions for part (c), but many partial results. Showing that
the connected sum of an even number of copies of the projective plane is
null-cobordant was usually missing.

Overall, there were lots of good solutions for Question 2. In part (a), some
people forgot to require a Seifert surface to be compact. In part (b), many
candidates got the wrong Seifert matrix, due to miscalculating linking
numbers. This did not affect the marks given for (b)(iii) and (c). Most
solutions for (c) were correct.

There was just one solution for Question 3, which was essentially correct.

C4.1: Further Functional Analysis

Question 1 This question was attempted by all candidates. (a) was often
well done, though often with rather convoluted answers in (ii), and lengthy
arguments in (iii). Many candidates missed that given x+Y ∈B0

x/y in (ii), the
definition of the norm gives y ∈ Y with ∥x+y∥ < 1 which has T(x+y) = x+Y
. A number of candidates gave good answers to (b)(i), either using Hahn-
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Banach to obtain norming functionals to directly show that {x : ∥x∥ > a}
is weakly open, and others quoting the result from the course that norm
closed convex sets are weakly closed to see that {x : ∥x∥ ≤ 1} is weakly
closed.

Part (b)(ii) caused difficulties. Few candidates used the result from the
course that 0 is in the closure of SX if X is in finite dimensional, which
quickly shows that if the norm is weakly continuous, then the space must
be finite dimensional.

(c)(i) proved challenging for many, but a number of strong and creative
answers where produced showing excellent functional analytic skills. It
was intended that candidates might take x ∈ Bx and then consider BX(2) +
(x+Y) which is a weakly closed (as it is norm closed and convex) subset of
BX(2) which is weakly compact as X is reflexive. Then taking an element
which attains the in mum of the norm on this set does the job. One very
nice alternative answer noted that as

T(BX) ⊂ T(BX) ⊂ T(B0
X) = T(B0

x/y

(using continuity at the first equality) it suffices to show that T(BX) is norm
closed. They then did this as BX is weakly compact (by reflexivity) and
T is weakly continuous. While a number of candidates noted that a non-
reflexive space, such as ℓ1 , would be needed in (c)(ii), few turned this into
a counter example. (d)(ii) saw few attempts, probably as candidates where
short of time.

Question 2 (a)(i) and (ii) where well done (though often with slightly longer
than expected answers for (ii) - few candidates noted that if pC(x) ≥ 1, then
x ∈ C as C is closed). In (iii) candidates could have saved time by simulta-
neously showing the required equivalence along side demonstrating that
pC is a norm (and many candidates didn’t use the conditions in the course
for when pC is a norm). (iv) caused difficulties to many candidates, with
only few making much progress with the Hahn-Banach separation argu-
ment (or the converse, where one should use the failure of the condition to
give an explicit weak∗-open neighbourhood of some f with ||| f |||x∗ > 1).

Part (b)(i) was generally well done, and many candidates showed that
||| f |||x∗ is not strictly convex. Few noticed that it was also necessary to
check that the ball { f ∈ X∗ : ∥| f ∥| ≤ 1} is weak∗-closed in the topology
coming from the original norm on X∗ so that (a)(iv) could be applied to see
that this is the dual norm of the associated norm pC on X.
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Question 3 This question was not popular. Part (a) was typically well done,
as was part (b)(i), but the later parts of the question proved difficult for
many candidates. Many struggled to extract the relevant ingredient from
the proof of the Fredholm alternative to show that T is bounded below
on a complement of kerT in (b)(ii)(II). Some candidates put the argument
together well in (b)(iii), but others found this challenging. (c)(ii) is a mod-
ification of a problem sheet question on complete continuity to work with
the weak∗-topology, but a number of candidates didn’t note that the ( fn)
will be uniformly bounded by the principle of uniform boundedness so
(T∗ fn) has a convergent subsequence.

C5.1: Solid Mechanics

Q1: This question was attempted by all but one candidates. It was gener-
ally well done, though surprisingly few candidates gave an explicit condi-
tion for the inversion in part (b)(iii) in terms of the wi. Very few candidates
were able to use the positive definiteness of B in either part (b)(iv) or (c)(ii).

Q2: This question was fairly popular, but was not particularly well done.
Most students tried to use a boundary condition at r(A) = a to deter-
mine the unknown constant in part (a)(ii), rather than the observation that
r(0) = 0 (since material is at the origin and must remain there). Similarly,
students did not, in general, realize that Trr = Tθθ in this geometry, mean-
ing they were not able to solve the differential equation for Trr required in
part (b)(ii). Finally, for part (b)(iv), relatively few students calculated the
integral required for the total load, and so did not derive the equation for
Ŵ.

Q3: This question was not especially popular, but received relatively high
marks on the whole. Part (a) followed lecture material very closely and
was done well. Part (b) followed similar lines with a twist; here candidates
were generally able to find the sixth order polynomial required for part
(b)(ii) but dealing with the different stretches in part (b)(iii) proved more
challenging.

C5.2: Elasticity and Plasticity

Question 1 This was the least popular question, but many of those who
attempted it managed to get good marks. Some candidates really struggled
with the basic geometric identities needed in part (a), but then the non-
dimensionalisation and the manipulations needed for parts (b)–(d) were
mostly handled well. In part (e), no-one got the point about the curvatures
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of the beam and the wall matching when λ = 4π2.

Question 2 This was the most popular question, but had the lowest
average mark. The bookwork in parts (a) and (c) was done quite well,
although often laboriously and with important steps omitted. In part (b),
many students were confused by the fact that Re[ f ] was not the same as the
stress function used in lectures for a standard Mode III crack problem. In
part (d), almost no-one successfully posed and solved the problem in the
ζ-plane to determine f (z), although some anyway managed to spot that
f
(
z(ζ)

)
= −c2e2ϵ/

(
4ζ2) works. Part (e) was generally fine, although with a

lot of minor algebraic slips.

Question 3 This question was a generalisation of a problem sheet ques-
tion and was reasonably popular, but the average mark was rather low. The
solutions were often over-complicated, leading to students getting lost in
the algebra. In part (a), several students fallaciously imposed τrr = τθθ = 0
at r = b and then found themselves with too many boundary conditions.
In part (b), many students didn’t clearly state and apply the correct condi-
tions at the elastic–plastic free boundary r = s, and so were unable to close
the problem for s. In part (c), few students correctly imposed a purely elas-
tic response on the residual stress to describe the unloading. In part (d),
very few students understood that 2Pc1 < Pc2 is required for the described
behaviour to be possible, and almost no-one managed to deduce the given
bounds on the parameter β.

C5.5: Perturbation Methods

Overall Question 1 was popular. The first part of the question and the path
of steepest descent was generally tackled very well. For the next part of the
question, the choice of the appropriate contour for the use of the steepest
descent method proved to be a genuine hurdle in the question for a number
of candidates, while only the best attempts successfully expanded about
the location of the dominant contribution to the steepest descent integral.
Many candidates parametrised the steepest descent curve with respect
to ζ, without properly accounting for the fact the steepest descent curve
has an infinite gradient with respect to ζ at the location of the dominant
contribution or recognising that an alternative parametrisation may have
been more convenient.

Question 2 appeared to be the least favourite question. A few attempts
gathered difficulties early and these candidates generally moved onto the
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other questions, while there was also a number of very high scoring solu-
tions. Many candidates did not apply the method of intermediate variable
matching correctly, while the most successful solutions recognised which
terms had to balance when matching via the intermediate variable method.

Question 3 started with bookwork concerning important definitions that
candidates knew well. An occasional candidate used a different method
than requested in part (b), and a few candidates struggled, but on the
whole part (b) was executed very well. The final part differentiated most
attempts. In particular keeping track of the level of approximation and the
terms that need to cancel between the two integral contributions in the use
of the domain splitting method to more than leading order typically, but
not always, proved problematic for the candidates.

C5.6: Applied Complex Variables

Question 1

This question was very popular, and there were a lot of good answers. De-
spite the relative complexity of the setup, all but one candidate identified
the correct domains in the potential and hodograph planes (though not all
fully justified their figures). Most managed to work through the question
successfully. The final equation should have read

ϕ = 2
π log|sec2α|

since sec2α < 0. Most candidates did not notice this; those that did correctly
assumed that the question was in error.

Question 2 This was a very unpopular question, probably because the set
up was slightly less familiar than that in Q1 and Q3. There were only a
handful of answers, and very few good ones. Only one candidate realised
that the correct approach was to look for a Cauchy integral representation
of w′(z) + πiW(z). Ironically if instead of asking them to show

w′(z) + πiW(z) = 1
2πi

∫
Γ

d(ζ)
ζ−z (†)

I had told them that

w′(z) + πiW(z) = 1
2πi

∫
Γ

G(ζ)dζ
ζ−z

where G(ζ) was to be determined then they have found the question much
easier. Despite not being able to prove (†) most candidates could use it to
solve for w and deduce f .

Question 3 This was a very popular question and there were a lot of good
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answers. Most candidates successfully identified domains on which f̄+, ḡ+
and h̄−. are holomorphic, and the correct values of and α and β.

C5.7: Topics in Fluid Mechanics

Question 1 was straightforward and well done, except for the very last part
(the one-dimensional ‘phase plane’) which baffled everybody.

Question 2 was straightforward and well done until the last part, where
drawing the graph of f (ϕ) and then

∑
was challenging.

Question 3 was straightforward and well done. The ability of candidates
to make their way through the algebra of part (c) was encouraging.

In summary, the paper appeared to work well.

C6.1: Numerical Linear Algebra

Q2 was the most popular, and was attempted by over 80% of the candidates.
Q1 was attempted by slightly fewer candidates than Q3.

Q1: some struggled to use the Courant-Fischer theorem properly in a(i)
to get the desired inequality. a(iv) was a new problem requiring some
guessing and computation, and seemed to be very challenging. In (b)
some failed to note the assumption k(A) ≫ 1; when k(A) = O(1) it is easy
to come up with examples, but the inequality is not very interesting.

Q2(b): while most correctly used the connection between the power method
and QR algorithm to discuss the convergence of the latter, very few noted
the requirement in the power method convergence that the initial vector
has nonzero components in the the dominant eigenvector. Q2(c)(ii): some
presented examples that are triangular or diagonal; while the QR algorithm
may not change these matrices much (or at all), this is not a good example
as such matrices have already converged! (d)(i) appears to have been very
challenging. One needs to use the backward stability of QR factorisation
and orthogonal matrix multiplication to prove one step of QR algorithm is
backward stable.

Q3(a) (i,ii): A fair number of candidates wrote H−1; this is inappropriate
as H is not even square. Some answered (iii)(c) by noting that once the
exact solution is found GMRES stops making progress; this is technically
correct (and received marks) but the intended solution was to note that
GMRES can stagnate even before the solution is found; a fact indicated in
a question in the problem sheets. (b) appears to have been challenging,
even though it is pretty similar to the discussion in lectures and a question
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in problem sheets. Most attempts failed to use the orthogonal invariance
of Gaussian matrices together with a QR (or SVD) of A.

C6.4: Finite Element Methods for Partial Differential Equations

Q1: This question was attempted by all but one student. It revealed a
good spread of abilities across those who attempted it. Q1(a)(i) was an-
swered correctly by every candidate. Q1(a)(ii) was generally answered
incorrectly; candidates failed to observe that the basis function ϕ4 associ-
ated with evaluation at the barycentre was zero on the boundary of the
cell, and hence did not contribute to the value of the function across a
shared edge. Q1(b)(i) was generally answered well, with most candidates
invoking the Sobolev embedding theorem as expected; some candidates
responded with irrelevant bookwork. In Q1(b)(ii) some candidates did not
recall the definition of a direct sum of two vector spaces, or forgot to show
that the sum was direct. Q1(b)(iii) and (iv) were answered well by those
who attempted them.

Q2: This question was attempted by half of all candidates. This question
attracted the stronger students, and was generally answered well. Q2(a)
was standard bookwork and was answered well. Q2(b) was again an-
swered well, with marks lost only for minor slips. Q2(c)(ii) challenged
some candidates; they did not realise to use the Poincaré inequality on the
first term of the right-hand side, and wound up with formulae for ε that
were not valid (e.g. requiring

√

1 − K2, where K > 1 generally). Q2(c)(iii)
was well-answered by those who attempted it.

Q3: This question revealed a good spread of abilities across those who
attempted it. Q3(a)(i) was answered correctly by every candidate. In
Q3(a)(ii), some candidates failed to justify that k(x) < M for some M; this
follows because k is continuous on a compact domain. For the last part of
Q3(a)(ii), some candidates invoked characteristic functions to explain why
the bilinear form would not be coercive, but such functions are not in H1;
one should instead use bump functions on the subset S ofΩ (with nonzero
measure) where k(x) < 0. Q3(b)(i) was mostly answered well, but every
candidate applied integration by parts to the ∇ × E term to shift the curl
operator onto the test function; this is not valid, because the test function
for this equation is drawn from H(div), and in general does not have a
square-integrable curl. In Q3(b)(ii), candidates sometimes neglected that
the question hadΩ ⊂ R3, notΩ ⊂ R2, or stated finite elements with scalar-
valued spaces instead of vector-valued ones. Q3(b)(iii) was answered well
by those who attempted it.
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C7.4: Introduction to Quantum Information

Question 1. It was by far the most popular question, attempted by all
of the students. Perhaps not so surprising, given that the question was
based on the mainstream material. The book-work in part (a) was very
well answered. In part (b) the students showed a good grasp of the Born
rule but many of them struggled with calculations that led to the Tr(U)
expression. Part (c), again, was almost perfectly answered, most likely
because the question did not explicitly ask for a detailed calculation of
the posterior probabilities. Those few who attempted to calculate the
posterior probabilities made minor mistakes, even though they managed
to arrive at the right conclusion. Part (d) turned out to be the most difficult
one, with many students failing to use the fact that the eigenvalues of a
unitary matrix are of the form eiθ. Instead many attempted to obtain the
eigenvalues from the constraints on the trace and the determinant. This
is a good alternative approach, but most of the students who took this
route could not see the relevance of the real part of Tr(U) when deriving
the probability from which the eigenvalues of U are then obtained.

Question 2. In general, the question was well answered and students
scored well. Part (a) was book-work but, surprisingly, many students
couldn’t succinctly justify the answers; part (b) was done in a few different
ways, but almost always successfully; in parts (c) and (d) most students
dropped a few marks, having struggled with upper bounds; part (e) was
usually answered correctly using mathematical induction; part (f) was
unproblematic and very few students got it wrong (usually silly mistakes).

Question 3. At first glance this question might have looked difficult for it
contained new topics (encryption of quantum states), hence it was not very
popular, but those who attempted it did quite well. Part (a) was similar to
one of the class problems and most students provided correct answers, but
only few supplemented it with geometric interpretation. Students knew
how to handle parts (b) and (c) but most did it by analysing specific cases,
rather than using general notation. Showing that compositions of Clifford
gates are Clifford gates in part (d) posed no problems. Most students
noticed that part (e) is a generalisation of part (c) and provided a reasonable
description of delegated quantum computation based on Clifford gates.
Part (f) was well answered but hardly anyone commented on the need to
go beyond the Clifford gates.
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C7.5: General Relativity I

Question 1: This question was very popular and attempted by most stu-
dents. The majority were able to do parts a-c without too much difficulty,
although a surprising number of students assumed that the curve γ was
a geodesic, despite the question explicitly saying that this may not be the
case. Those students who struggled with parts b and c also often seemed to
be under the impression that all curves are geodesics. Part d required some
more algebra, and the ability to convert between abstract tensor expres-
sions and concrete expressions for derivatives of functions along curves –
this proved a challenge to a number of students. A frequent error here was
believing that the t derivative of the t-component of a vector is always 1,
while in fact, in this question, the t-component of the vector in question is
a constant (and so its t derivative vanishes). Finally, part e should really
have been approached as a system of linear ODEs, but almost no students
did this. Instead, the majority of students who attempted part e derived a
second order ODE for one component of Y, and in doing so showed that
this component undergoes periodic oscillation – though they rarely went
on to show that the other components also oscillate periodically. Over-
all, most students scored well in the parts of the question they attempted,
and low scoring students most often offered partial answers to only a few
parts of the questions (the “bookwork” parts) and spent time copying out
parts of the question, while leaving other parts of the question completely
untouched.

Question 2: This was by far the least popular question, and was only
attempted by a handful of students, probably because it was the least
familiar in style (compared with past exam questions). Most of the students
who did attempt it did well, however, scoring slightly higher on average
than the other two questions. Part a was not completely straightforward
but almost all students were able to do it well, and part b required an
understanding of normal coordinates and special relativity which was also
demonstrated by almost all students. Part c was the most difficult part of
the question, requiring some fairly intricate algebraic manipulation, and
in fact no student was able to completely solve this part of the question,
though some came very close. Part d was generally done fairly well, even
by those students who could not complete part c, although no student
made explicit the crucial fact that the coordinate vector fields are parallel-
transported in Minkowski space.

Question 3: This was a very popular question, with the vast majority of
students attempting it together with question 1. Part a was done very
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successfully by almost all students, with only a small minority forget-
ting that the Lagrangian itself is a conserved quantity (when the curve
is parametrised by an affine parameter). Part b, however, was generally
not done successfully – in fact, no student completely solved this part of
the question, though some came very close. A very common error was to
assume that a geodesic which is emitted radially will always remain radial,
whereas in fact (since the spacetime is rotating) the geodesic will itself
start to rotate. The key point was to realise that the conserved angular
momentum is zero: noticing this made the rest of the algebra considerably
easier. Even taking this fact into consideration, the resulting integral was
not accurately solved by any student – the easiest way to solve it is to
first make a substitution of variables to remove the hyperbolic cosine, and
then to remember the formulae for derivatives of inverse trig functions,
and while some students were able to perform one of these operations,
no student did both. In retrospect this integral is probably too difficult
without a hint. Finally, students generally faired better on part c, although
a surprisingly large number of students made algebraic mistakes in solv-
ing the quadratic inequality in part c (i) (perhaps they were running out
of time when trying this question), and some students made the common
mistake of believing that every curve is a geodesic. Finally, most answers
to part c (ii) were nonsense, and while some students said something true
but trivial (e.g. that there are timelike circular orbits only in the interior re-
gion – although even this statement is true only if “circular” is interpreted
in a coordinate-relative manner), only one student identified the closed
timelike curves.

C7.6: General Relativity II

Problem 1 This problem exploring the redshift formula, the stress-energy
and the Ricci tensors in the (unnamed) Janis-Newman-Winicour metric
was attempted by the majority of the candidates. The typical issues were
the following.

• Confusing the coordinate time with the proper time, namely taking
the velocity vector of an observer following a curve γµ = (t, r0, θ0, ϕ0)
with constant r0, θ0, ϕ0 to be simply (1, 0, 0, 0), which is off by a factor
of (gtt|γ)−1/2.

• Taking the wave vector of a null ray γµ(λ) to be the velocity vector,
as opposed to γ̇µ, where k is the wave number.

• Ignoring or not taking full advantage of the trace reversal in the
Einstein field equations.
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Judging by the candidates’ performance, this problem may have been the
most challenging.

Problem 2 This problem on Einstein’s quadrupole formula was only tack-
led by one candidate - and with a very decent level of success. The un-
popularity of the problem may indicate the propensity of the students
attempting the exam towards more typical problems involving exact met-
rics.

Problem 3 This problem exploring the Killing horizon of the (unnamed)
extremal Kerr solution was attempted by all candidates. The typical mis-
takes were the following.

• In the context of a hypersurface
∑

defined by r = Const, identifying
normal vector N with ∂r instead of taking the normal covector to be
n ∝ dr, as implied by the regular-value theorem.

• Having observed the normal vector to be N = aT|∑ + bL|∑ =: K|∑,
where both T and L are Killing vector fields, extending the Killing
vector field K away from

∑
with non-constant a and b. This reflects

the complexity of the concept of Killing horizon, which relies on the
non-trivial combination of vector fields defined on and away from it.

C7.7: Random Matrix Theory

Question 1 was attempted by most of the candidates. Parts (a), (b) and (c)
were straightforward and were in general answered well. Most candidates
found part (d) difficult. Only a few calculated the variance, as asked for;
many only established an order estimate for it, but could then still prove
almost sure convergence successfully. Only a few candidates correctly
identified the paths that give a non-zero contrition in the limit and that the
contributions from these can be evaluated using the information given in
the question.

Question 2 was attempted by roughly half the candidates. Parts (a), (b) and
(d) were straightforward. In answering part (b), some candidates failed
to say that the random variables need to be paired with their complex
conjugates. Many candidates did well on part (c)(i), but some attempted
a more general calculation than was asked for. Part (c)(ii) was challenging
and only a few candidates scored well on it. Many didn’t see that the per-
mutations fall into two classes, with permutations in each class giving the
same contribution. Part (e) was also challenging and only a few candidates
scored well on it. Many failed to take advantage of the fact that the matrix
entries were stated to be Gaussian random variables and so to use Wick’s
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theorem, despite the question saying to do this.

Question 3 was attempted by roughly half the candidates. Most of those
who did attempt it gained high marks. Part (a) was straightforward.
Many candidates saw that using the Fourier expansion for the ratio of sine
functions considerably simplifies the calculation, but not all did. Most
found parts (b) and (c) straightforward too, although some failed to apply
Gaudin’s Lemma correctly. Several candidates did part (d) well, but some
failed to spot the connection to the two-point correlation function, which
simplifies the calculation considerably.

C8.1: Stochastic Differential Equations

Question 1. This is a popular question (due to the first question on the paper
I believe) attempted by most candidates, while unfortunately there are few
good solutions. The first part (a)(i) turns out to be the most challenging
part, and very few candidates have idea how to argue independence of
Gaussian random variables. By part (a)(i), the part a(ii) should be easy and
follows from the martingale property of M2

−⟨M⟩t, but still many candidates
had no idea how to do it. While most candidates got the marks for a(iii) by
using Itô’s formula. Candidates find (b) also very challenging, and most
of candidates tried to answer this part by using Itô’s formula, which is not
the direct to do yet though it is possible. While most candidates could not
argue properly.

Question 2. This is again a question attempted by most candidates. There
are good answers for part (a) which may be answered following step by
step (i) - (iv). While candidates had difficult to show the Lipschitz conti-
nuity of the coefficients, which is required a bit Prelims analysis. Part (b)(i)
is an easy exercise for the exponential martingales, so most candidates
got a fair marks, while (b)(ii) seems challenging, some candidates tried
to use Itô’s formula though the correct way should be the one most ele-
mentary: writing down the expectations of both sides in terms of normal
distributions.

Question 3. Several candidates attempted this question, but I saw no near
complete solutions unfortunately. Parts (a) and (b) are mainly book, in-
cluding a simple application Lévy’s characterisation of Brownian motion.
To calculate the pdf in part (c), one should apply Cameron-Martin for-
mula to work out the weak solution, then apply (b). But most candidates
who attempted this question just applied Tanaka’s formula to the solution
directly which leads to a wrong formula.
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E. Comments on performance of identifiable individuals

Prizes

Prizes were awarded to the following candidates:

The top prize was awarded to:

Mark Potts (Hertford College)

Prizes were also awarded to:

Maxwell Hutt (New College)
Kai Alexander Bartnick (Somerville College)

The following student was highly commended for his dissertation:

Sebastian Leontica (St Peter’s College)

Mitigating Circumstances Notices to Examiners

The Examiners received 16 applications regarding mitigating circumstances.
The Examiners considered the applications carefully and agreed appropri-
ate action.
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