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1. In this question we will examine the stability of a differentially rotating disc of material
in the presence of a weak magnetic field.

(a) [5 marks] The following equation of motion

ρ
D~u

Dt
= −~∇

(
P +

B2

2µ0

)
+

1

µ0

(
~B · ~∇

)
~B − ρ~∇Φ− 2ρ~Ω× ~u− ρ~Ω×

(
~Ω× ~r

)
,

describes the rate of change of the fluid velocity ~u in a rotating coordinate frame (with
rotation rate defined by the rotation vector ~Ω). Discuss how this equation of motion
is derived, defining all of the relevant physical quantities. Explain under what physical
and mathematical assumptions this equation is valid. You may state without proof that
accelerations in inertial and rotating reference frames are related by

D~u

Dt
+ 2~Ω× ~u+ ~Ω×

(
~Ω× ~r

)
=

D~v

Dt
,

where ~u = d~r/dt and ~v are the velocities in the rotating and inertial reference frames
respectively, and D/Dt is a Lagrangian time derivative.

(b) [2 marks] Work in cylindrical coordinates ~r = (R,φ, z), and orientate the rotational
axis along ẑ, ~Ω = Ωẑ. For the remainder of this question we shall ignore all vertical struc-
ture of the fluid. In the limit in which pressure and magnetic forces are sub-dominant,
derive the relationship between the gravitational and rotational forces in equilibrium, as-
suming that Ω is equal to the rate of rotation of the fluid which follows circular orbits.

(c) [3 marks] Show that a fluid element displaced from R to R + ξR, but which does not
change its rate of rotation, experiences a mismatch between gravitational and rotational
forces with magnitude equal to

|∆f | ' ρξRR
dΩ2

dR
.

(d) [5 marks] Consider now a more general perturbation to the fluid location, of the form
~r → ~r + ~ξ, where ~ξ = (ξR, ξφ, 0)eikz � ~r. Assume that the equilibrium magnetic field is
~B = B0ẑ, and that the fluid is incompressible. Using the induction equation, or otherwise,
show that the perturbation to the magnetic field caused by this fluid displacement results
in a magnetic tension force equal to

~f = −k
2B2

0

µ0
~ξ.

Give a mechanical interpretation of this force.

(e) [10 marks] Again neglecting pressure forces, show that the displaced fluid element’s
leading order equations of motion have solutions which are proportional to e−iωt, provided
that ω satisfies the dispersion relation

ω4 − ω2

(
2k2v2A + 4Ω2 +

dΩ2

d lnR

)
+ k2v2A

(
k2v2A +

dΩ2

d lnR

)
= 0,

and define the quantity vA. What is the stability condition for the fluid in this setup?
Is this stability condition satisfied for a fluid orbiting about a central point mass, with
gravitational potential Φ = −GM/R? Contrast this stability criterion with that in the
absence of a magnetic field.
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2. This is a question about a spatially uniform suspension of bead-spring pairs in an incom-
pressible Stokes flow with uniform velocity gradient ∇u. The two beads of a representative
bead-spring pair are at locations r1(t) and r2(t). They are joined by a Hookean spring with
spring constant H. Each bead experiences a Stokes drag ζ when moving relative to the sur-
rounding fluid. The mean position x = (r1 + r2)/2 and displacement R = r2− r1 of the beads
evolve according to

ẋ = x · ∇u, Ṙ = R · ∇u− 2H

ζ
R− 2kT

ζ
∇R logψ, (?)

where T is the (constant) temperature of the system, and k is Boltzmann’s constant. The sus-
pension is described by the distribution function ψ(R, t) normalised so that

∫
ψ(R, t) dR = 1.

Let 〈· · · 〉 denote
∫
· · ·ψ(R, t) dR.

(a) [4 marks] First consider a more general incompressible fluid system with constant density
ρ and symmetric stress tensor σ in a space-fixed volume V with boundary ∂V and outward
normal n. The fluid velocity u evolves according to ρ∂tu = ∇ · σ. Show that

d

dt

∫
V

1

2
ρ|u|2 dV =

∫
∂V

u · σ · ndS −
∫
V

Φ dV,

where Φ = σ : ∇u = σij∂jui in index notation. Show that Φ > 0 for a Newtonian fluid.

(b) [8 marks] The distribution function ψ(R, t) evolves according to

∂tψ +∇R ·
(
Ṙψ
)

= 0,

where Ṙ is given by (?) above. Show that C = 〈RR〉 evolves according to

∂tC− (∇u)T · C− C · (∇u) =
4kT

ζ
I − 4H

ζ
C.

(c) [4 marks] Show that the viscous dissipation due to one pair of beads moving relative to
the fluid around them is

1

2
ζ
∣∣Ṙ−R · ∇u

∣∣2.
(d) [9 marks] Now suppose that the beads are also distributed in the relative velocity Ṙ, so

the system is described by the extended distribution function

Ψ(R, Ṙ, t) = n
( m

4πkT

)3/2
exp

(
− m|Ṙ|

2

4kT

)
ψ(R, t).

Here ψ(R, t) is the distribution function above, n is the (constant) number density of bead-
spring pairs, and m is the mass of each bead. Let 〈〈· · · 〉〉 denote

∫∫
· · ·Ψ(R, Ṙ, t) dṘdR.

Show that 〈〈
1

2
ζ
∣∣Ṙ−R · ∇u

∣∣2〉〉 = nHC :∇u,

and explain why this is consistent with the result in part (a).
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