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1. Consider a Hamiltonian system ofN indistinguishable particles of unit mass interacting through
a pairwise potential φ. Any function F of the particle positions xi, velocities vi, and time
evolves according to

dF

dt
=
∂F

∂t
+ {F,H},

where

H =
1

2

N∑
i=1

|vi|2 +
∑

16i<j6N

φ(|xi − xj |), {A,B} =

N∑
i=1

(
∂A

∂xi
· ∂B
∂vi
− ∂B

∂xi
· ∂A
∂vi

)
.

(a) [8 marks] By separating the Hamiltonian into a sum of three terms, or otherwise, show
that the one-particle distribution function f(x,v, t) evolves according to

∂f

∂t
+ v · ∇f =

∫
dv?

∫
dx?

∂f2
∂v
· ∂φ(|x− x?|)

∂x
,

where f2(x,v,x?,v?, t) is the two-particle distribution function.

(b) [4 marks] Derive an evolution equation for the fluid mass density ρ(x, t) =
∫

dvf(x,v, t),
and show that the fluid momentum ρ(x, t)u(x, t) =

∫
dv vf(x,v, t) evolves according to

∂(ρu)

∂t
+∇ · (ρuu + P) = −

∫
dx? n2(x,x?, t)

∂φ(|x− x?|)
∂x

, (?)

where the two-particle number density is

n2(x,x?, t) =

∫
dv

∫
dv? f2(x,v,x?,v?, t).

Give an expression for the pressure tensor P in terms of f .

(c) [8 marks] Show that ∂n2/∂s = R · ∂n2/∂x for the two-particle number density

n2(x + (s− 1)R,x + sR, t).

Hence verify that the momentum equation (?) can be written in the conservation form

∂(ρu)

∂t
+∇ · (ρuu + P + Pφ) = 0,

using the inter-particle pressure tensor Pφ with components

Pφij(x, t) = − 1

2

∫
dRRiRj

1

R

dφ

dR

∫ 1

0
ds n2(x + (s− 1)R,x + sR, t),

where R = |R|.
(d) [5 marks] The two-particle correlation function g2 is defined by writing

n2(x,x?, t) = ρ(x, t)ρ(x?, t)g2(x,x? − x, t).

Suppose that the system is in a spatially homogeneous and isotropic state. Show that the
total pressure tensor is P + Pφ = pI, where I is the identity tensor, and

p = ρθ − 2π

3
ρ2
∫ ∞
0

R3 dφ

dR
g2(R, t) dR.

Give an expression for θ in terms of f , and explain why g2 can be written in this form.
What is the sign of the second term for a repulsive potential?
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2. Consider a one-dimensional plasma in which the electron distribution is f(t, x, v) = f0(t, v) +
δf(t, x, v), where f0 is the mean of f over space (over x) and over the time scales associated
with the electric fluctuations. Let the electrostatic potential of the latter satisfy

ϕ(t, x) =
∑
k

ϕk(t)e
ikx, ϕk = χk(t)−

4πe

k2

∫ +∞

−∞
dv δfk(t, v). (1)

Here −e is the electron charge, δfk is the Fourier transform of δf , defined in the same way
as the Fourier transform ϕk of ϕ, and χk(t) is an externally imposed random noise, white in
time: 〈χk(t)χ∗k(t′)〉 = 2Akδ(t− t′), where the noise spectrum Ak is independent of time. Any
perturbations of the ion distribution are to be neglected.

(a) [6 marks] Assuming δfk(t = 0, v) = 0 and using the quasilinear approximation, show that

∂f0
∂t

=
∂

∂v

[
D(v)

∂f0
∂v

]
, D(v) =

e2

m2
e

∑
k

k2Ak
2π2

∫
dp

∫
dp′∗

e(p+p
′∗)t

(p+ ikv)(p+ p′∗)ε(p, k)ε(p′, k)∗
,

(2)
where me is the electron mass, the integration contours in p and p′ are ones associated
with the inverse Laplace transform, viz., p, p′ ∈ (−i∞+ σ,+i∞+ σ) with a real constant
σ > 0 to the right of any poles in the complex p plane,

ε(p, k) = 1−
ω2
pe

k2
1

ne

∫
CL

dv′
1

v′ − ip/k
∂f0
∂v′
≈ 1−

ω2
pe

ω2
− i

ω2
pe

k2
π

ne
f ′0

(ω
k

)
(3)

is the dielectric function, ωpe = (4πe2ne/me)
1/2 is the electron plasma frequency, ne is

the mean electron density, CL is the Landau contour (you need not prove that this is the
right contour to use), and the second expression (which you need not derive but which
will be useful to you later) is an approximation valid for p = −iω + γ, γ � kvthe � ω,
vthe being the characteristic thermal width of the electron distribution.

(b) [5 marks] Assume that f0 is a stable distribution and hence argue that you are allowed to
take σ → +0. Show that, if we wait long enough for any damped perturbations to decay,
the quasilinear diffusion coefficient is

D(v) =
e2

m2
e

∑
k

k2Ak
|ε(−ikv, k)|2

. (4)

(c) [5 marks] Consider a noise spectrum Ak concentrated at wavenumbers k � λ−1De , where
λDe = vthe/

√
2ωpe is the electron Debye length. Show that the rate of growth of the total

kinetic energy K per unit volume of the electrons (i.e., the heating rate) is

dK

dt
=
e2ne
me

∑
k

k2Ak. (5)

(d) [5 marks] Now consider Ak concentrated at k � λ−1De . Prove that the heating rate is the
same, even though a different approximation for the dielectric function has to be used. In
this derivation, you may use the formula

1

(kv − ω)2 + γ2
≈ πδ(kv − ω)

|γ|
if γ � kv ∼ ω. (6)

.

(e) [4 marks] The heating in one of the limits considered above is called “resonant heating”
and in the other, “stochastic heating”. Which one, in your view, is which and why?
Explain the physical mechanism in each case.
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3. (a) [3 marks] Give two reasons why the kinetic theory of stellar sytems is usually formulated
in angle-action variables (θ,J) rather than position and velocity (x,v). Let f(θ,J, t) be
the distribution function (DF) of an ensemble of equal mass stars, normalized such that
the total mass in stars is

∫
dθdJf = M . Assuming the Hamiltonian governing individual

stellar motions is some function H(θ,J, t), write down the collisionless Boltzmann (or
Vlasov) equation governing the evolution of f .

(b) [1 mark] Let f(θ,J, t) = f0(J) + δf(θ,J, t), where f0(J) is an unperturbed DF, and let

H(θ,J, t) = H0(J) + δΦtot(θ,J, t). (7)

By linearizing the Vlasov equation under the assumption that the fluctuations δf , δΦtot

are small, write down the equation determining the time evolution of δf .

(c) [4 marks] Define the Fourier-Laplace transform of an arbitrary smooth function g as

g̃n(J, ω) =

∫ ∞
0

dt exp(iωt)

∫
dθ

(2π)3
exp(−in · θ) g(θ,J, t), (8)

where Im ω > 0 is large enough for the integral to converge, and n ∈ Z3. Using the result
of part (b), and assuming that δf = 0 at t = 0, show that

δ̃fn(J, ω) = −n · ∂f0
∂J

δ̃Φ
tot

n (J, ω)

ω − n ·Ω(J)
, (9)

where you should define the frequency vector Ω(J).

(d) [9 marks] Consider a fictitious, homogeneous stellar system, placed within a periodic 3D
cube of side-length L, and with zero mean potential Φ0 = 0. Then one has

θ =
2π

L
x, J =

L

2π
v, Ω =

2π

L
v. (10)

Assume further that the total potential fluctuation δΦtot = δΦ + δΦext, where δΦ is self-
consistently generated from δf , and δΦext is externally imposed. Using equation (9), show
that for this system

δ̃Φ
tot

k (ω) =
δ̃Φ

ext

k (ω)

εk(ω)
, (11)

where

εk(ω) = 1 +
4πG

k2

∫
dv

1

k · v − ω
k · ∂f0

∂v
, (12)

and k = 2πn/L. How can this result be analytically continued to the entire complex ω
plane? What do the zeroes of εk(ω) correspond to?

(e) [3 marks] Assume that the external perturbation is due to a point mass mp, which is
introduced at t = 0 and thereafter moves on the straight line trajectory x = xp + vpt.
Show that in this case,

δ̃Φ
ext

k (ω) = −4πGmp

L3k2
exp(−ik · xp)

1

i(k · vp − ω)
. (13)

(f) [5 marks] Assume that f0 is stable. Using the residue theorem, show that the time-
asymptotic linear response of the system’s total potential satisfies

δΦtot
k (t) =

δΦext
k (t)

εk(k · vp)
. (14)

Interpret this result physically. How long do we have to wait for this result to become
valid?
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