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1. The quantized complex scalar field ϕ(t,x) and its Hamiltonian H are given by

ϕ(t,x) =

∫
d3p

(2π)3
1√
2Ep

(
b†−pe

iEpt + ape
−iEpt

)
eip·x,

H =

∫
d3p

(2π)3
Ep(a

†
pap + b†pbp) ,

where [
ap, a

†
q

]
=

[
bp, b

†
q

]
= (2π)3δ3(p− q) ,

and all other commutators vanish.

(a) [4 marks] Show that ϕ(t,x) obeys the Heisenberg equation of motion

i
∂ϕ(t,x)

∂t
= [ϕ(t,x), H].

(b) [4 marks] Write down the expression for the total momentum operator P in terms of the
annihilation and creation operators. Show that

−i∇ϕ(t,x) = [ϕ(t,x),P ] .

(c) [5 marks] The time and space translation operators are e−itH and eix·P respectively.
Using the results (a) and (b), show explicitly that these operators give the correct result
for infinitessimal transformations.

(d) [4 marks] Assume that the results above apply (with appropriately defined P and H) for
a quantized scalar field ϕ(x) in an interacting field theory. Let |Ω⟩ denote the Lorentz
invariant vacuum and |ψ,p⟩ a scalar state with rest mass mψ and three momentum p.
Show that

⟨Ω|ϕ(x)|ψ,p⟩ = e−ip·x⟨Ω|ϕ(0)|ψ,p⟩ ,

and give the components of the 4-vector pµ.

(e) [8 marks] Assume that there exists a unitary Lorentz boost operator Uβ such that
Uβ|ψ,p⟩ = |ψ,pβ⟩, where pβ is the result of the boost β on p, and that ϕ(x) is a Lorentz
scalar. Show that

⟨Ω|ϕ(0)|ψ,p⟩ = ⟨Ω|ϕ(0)|ψ,0⟩ .

With the same assumptions find the eigenstate |Ψ⟩ of energy EΨ such that

⟨χ, q|ϕ(x)|ψ,p⟩ = ⟨Ψ|ϕ(0)|ψ,0⟩ ,

and find an expression for EΨ in terms of p, q and mψ.
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2. The Dirac gamma matrices satisfy

{γµ, γν} = 2ηµν µ, ν = 0, 1, 2, 3 , (1)

where ηµν = diag(1,−1,−1,−1); and us(p) denotes the Dirac spinor normalized to
us(p)†us

′
(p) = 2Epδ

ss′ .

(a) [3 marks] Assuming (1), show that /p/p = p2, and hence that any polynomial of /p must
take the form A(p2)/p+B(p2).

(b) [6 marks] Define P (p) by (P (p))ab =
∑

s u
s
a(p)u

s
b(p). Show that (/p −m)P (p) = 0, and

that Tr[P (p)γ0] = 4Ep. Hence, by assuming P (p) must be a polynomial in /p, and not
otherwise, show that P (p) = /p+m.

(c) [8 marks] The Lagrangian density for a system consisting of a real scalar and two types
of Dirac fermion in four dimensions is given by

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 +

∑
i=1,2

ψi(iγ
µ∂µ −m)ψi − gϕψiψi .

A type 1 fermion with spin and four-momenta s1, p1 annihilates with a type 1 anti-fermion
with spin and four-momenta s2, p2 producing a type 2 fermion with spin and four-momenta
s3, p3 and a type 2 anti-fermion with spin and four-momenta s4, p4. Draw the tree-level
Feynman diagram, including momentum and particle labelling, for this process. Using
momentum space Feynman rules for Minkowski space-time, write down a formula for the
matrix elementM s1,s2,s3,s4

p1,p2,p3,p4 corresponding to your diagram. Show that the total amplitude
squared for the spin averaged scattering of unpolarised particles to a final state of any
spin is given by

|M |2 = g4
(
4m2 − s

M2 − s

)2

,

where s = (p1 + p2)
2. [You may assume that P (p) =

∑
s v

s
a(p)v

s
b(p) = (/p−m)ab.]

(d) [8 marks] A type 1 fermion with spin and four-momenta s1, p1 scatters off a type 1 anti-
fermion with spin and four-momenta s2, p2 producing a type 1 fermion with spin and
four-momenta s3, p3 and a type 1 anti-fermion with spin and four-momenta s4, p4. Draw
the tree-level Feynman diagrams for this process. How does the matrix element transform
under p1 ↔ −p4? Making use of the result from (c), and without further detailed calcu-
lation, deduce as much as you can about the total amplitude squared for the scattering
of unpolarised particles to a final state of any spin.
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3. This question concerns the theory of a real scalar field ϕ and a two-component fermion in 3
dimensions (one time and two space) whose Lagrangian is given by

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 + ψ(iσµ∂µ −m)ψ − g1

2
ϕ2ψψ − g2

4!
ϕ4 − g3

6!
ϕ6 , µ = 0, 1, 2 .

Here γ0 = σ3, γ
1 = iσ1, γ

2 = iσ2, σi are the Pauli matrices, and ψ ≡ ψ†γ0.

No credit will be given for answers to the following questions that do not work in 3 dimensions.

(a) [3 marks] What are the dimensions of g1, g2 and g3?

(b) [8 marks] The superficial degree of divergence of an amputated Feynman graph Γ(pi),
where pi ≫M,m are external line momenta, is defined by

Γ(λpi) = λωΓ(pi) .

Show that the superficial degree of divergence of a graph with b external boson lines, f
external fermion lines and ni vertices with coupling gi is given by

ω = 3− 1

2
b− f − n2.

(c) [7 marks] List the correlation functions that are superficially divergent in this theory and
explain why it is expected to be renormalizable.

(d) [7 marks] Assuming that g3 = 0, show that to one-loop order no ϕ6 counter-term is
required. Discuss what happens at two-loop order.
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